NNDL

 

 

06046003 NEURAL NETWORK AND DEEP LEARNING


In this class, we study Neural networks and Deep learning being currently the most interesting in artificial intelligence works.  By the subtopics consisting, the overview of artificial intelligence and machine learning, Neural network, the usage NN for recognition, training NN with a random walk, the back-propagation NN, evolutionary computation, improvement BNN with GA, a multi-layer hidden node in NN, the improvement MLNN with GA, and deep learning.

Schedule

NO. DATE TOPIC DOWNLOAD
 1

 

  Chapter00 Course description

  Chapter01 Basic R-Programming

 

  Chapter00

  Chapter01

  Metrial01

 2  

  Chapter01 Basic R-programming

 

 

 

 

 

 2  

  Chapter02 Perceptron

 

  Chapter02

  Metrial02

 

 

 3     Chapter03 Feed Forward Neural Network

  Chapter03

 5     Chapter04 Multilayer perceptron

  Chapter04

 6     Chapter05: Feed Forward Neural Network

   Chapter05

  Metrial05
 

 7     Chapter06: Applied FFNN

  Chapter06

  Metrial06

 8     Chapter07: Recurrent Neural Network

  Chapter07

  Metrial07


 9    Midterm Examination Week

 

 10    Chapter08: Apply RNN

  Chapter08

  Metrial08

 12    Chapter09: GRU, Long Short-Term Memory  
 

  Chapter09

  Metrial09

 

 

 13      Chapter10: Convolutional Neural Network

  Chapter10

  Metrial10

 

 14   Chapter11: Apply Evolutionary Computation for solving NN problems


  Chapter11

 

 15      
 16      
 17      
 18      

 


Score


 


References

 


Library