IEEE AUTHORSHIP SERIES

HOW TO WRITE FOR TECHNICAL PERIODICALS & CONFERENCES

As a researcher or practicing engineer, you know how important it is to publish the results of your work. It is not just about career advancement or getting recognition. Publication is a critical step in the scientific process. Your discoveries will foster innovation and help advance technology for public good.

But that can only happen if your research can be read, understood, and built upon by your fellow researchers and engineers.

This guide is designed to help you succeed as an author.

CONTENTS

SECTION 1	
INTRODUCTION	2

SECTION 2

BEFORE YOU BEGIN	
Conducting Your Literature Search	
Next Steps	

SECTION 3

G5
5
5
7

SECTION 4 SELECT AN

ELECT AN APPROPRIATE FORMAT8	
Conference or Periodical?	8
Full Length, Original Research	8
Conference Articles	8
Reviews	8
Letters	8

SECTION 5	
SELECTING WHERE TO SUBMIT	9
Selecting a Periodical	9
Selecting a Conference	9
Open Access Journals	10

SECTION 6 DEVELOPING

Author Responsibilities11
The First Draft11
Where to Begin Writing11
Formatting Your Article15

SECTION 7

IMPROVING AND REVISING	
How to Revise	
Polishing	
Tips for Non-English Speakers	
Internal Review	

SECTION 8

SUBMISSIONS	
Cover Letter	20
Journal Submissions	20
Conference Submissions	

SECTION 9

PEER REVIEW	
How Peer Review Works	22
Review Outcomes	23
Response Letter and Article Revision	23
If Your Article is Rejected	24

SECTION 10

THE FINAL STEPS	
Reviewing Page Proofs	25
Publication	
Discoverability of Your Article	

SECTION 11

APPENDIX	
Online Resources for Authors	27
References	28

KEY: Pappears beside links to online resources

SECTION 1 INTRODUCTION

You will learn how to prepare, write, and submit your manuscript for peer review by an IEEE conference, journal, or magazine. We will show you how successful authors structure quality work to improve their chances of being accepted. You will find practical tips on how to select an appropriate periodical or conference, organize your manuscript, write in a clear and grammatically correct style, and work through peer review. You will also learn how to avoid common mistakes and ethical lapses that will prevent your manuscript from being accepted and may damage your reputation.

Publishing is central to the mission of IEEE: to foster technological innovation and excellence for the benefit of humanity. IEEE provides high quality, innovative information by attracting the best authors and supporting them through the publishing process. A Web-based workflow and tools such as reference validation, graphics checking, and templates streamline the submission process.

Where you publish matters. Your technology colleagues want to know that the information they cite comes from a credible publication. For over 125 years, IEEE has been a trusted source for researchers in academia, corporations, and government. IEEE conference proceedings are recognized worldwide as the most vital collection of consolidated published articles in electrical engineering, computer science, and related fields. IEEE journals are cited over three times more often in patent applications than other leading publishers' journals [1]. As an IEEE author, you will both contribute to and benefit from that impact and reputation.

Authors need to find your research in order to cite it. The IEEE Xplore® digital library C^{*} is an advanced online platform containing most of the published material from IEEE Publications and its predecessors. It is designed so that your published work will appear in search results quickly and in the right context. Depending upon the periodical in which you publish, your work will be indexed by organizations that facilitate discovery and connections among scholarly publishers, such as Google, CrossRef, Elsevier, Thomson Reuters, ProQuest, IET, and NLM.

If you have solved a new and important problem in your field or you have gathered and analyzed data about an important engineering process, it is time to share your results with your colleagues. You want to publish your best work in the right periodical to advance progress in your field. This guide will help you get there.

Good luck.

SECTION 2 BEFORE YOU BEGIN

The development of your manuscript will begin long before you begin to actually write your first draft. You should not write just for the sake of publishing or to accumulate citations for your curriculum vitae. If you do, surviving peer review will be a challenge. As you plan your research project, think about how your work will be received and evaluated by your peers.

Ask yourself these questions:

- Is this an important problem, or, is the data collected and analyzed of interest to the wider community?
- ▶ What has been done in the past?
- Does this research significantly advance the state of the field?

To answer these questions, you need a solid understanding of the relevant literature.

Conducting Your Literature Search

Your research problem must contribute new and important knowledge to your field. A thorough review of the published literature will help you determine if this is the case. You must be able to show reviewers and readers that you understand what work has been done before, and that your research adds some new understanding to the field.

Some, although not all, of the resources you identify in the literature review will become references in your work. They will be used in the introduction and the discussion sections to show how you are making an important contribution to your field. Finally, a thorough review of the literature will help you select the publication or conference to which you will submit your work, a task you will read more about in Section 5. The Internet has made it easy—perhaps too easy—to find information. You need a solid search strategy to find the literature that is most relevant to your work. Your first instinct may be to start your search in Google or one of the other general search engines. This approach is likely to generate tens of thousands of results. Some results will be from reliable, citable resources, but many will not. Resist the temptation to "Google it" until after you have used databases of peerreviewed literature that are more trustworthy and targeted to scientific investigation.

IEEE Xplore® Digital Library

IEEE *Xplore* offers a robust interface to help you discover and access scientific content from IEEE and its publishing partners. It provides online access to more than three million full-text documents published in some of the world's most highly cited publications in electrical engineering, computer science, and electronics.

Bibliographic Databases

There are a number of databases experienced engineering writers use to conduct literature searches, including Compendex[®] and Inspec[®]. These databases will help you identify references from a broad selection of literature.

Your Institution's Library

If you are affiliated with an academic or government institution, you are in luck. Your library has invested heavily in resources specifically to help you conduct your research and publish your results. Librarians at your institution are trained to conduct precise searches to answer your questions. They can help you access resources that are available in your library and they will find external documents for you as well. Corporate libraries can also provide excellent resources.

References and Citations

Once you identify a major document that is relevant to your research, check the references. They will lead you to the research that laid the basis for your area of study. Use tools available in platforms such as IEEE *Xplore* to find works that cite the documents you have identified. These will highlight more recent research results.

Taking Notes and Keeping Track

As you search, scan the abstracts and key words. There is no need to read through every document. For each reference you want to include in your bibliography, make note of the original publication source and, if appropriate, the URL location. As you scan the article, take notes in your own words. Keep track of where you got ideas [2]. Even if you do not directly quote a source in your article, you will need to give attribution to the original source material. Making detailed notes now will help you avoid the danger of accidentally plagiarizing someone else's work. See Section 3 for a complete discussion of plagiarism.

Next Steps

Once you are confident that you have solved an important problem or completed a set of experiments and analyzed the results, and done a thorough literature search, it is time to decide what to include in your manuscript and how to present it. Spend some time brainstorming about your research. What are the three or four fundamental points you want readers to understand and remember once they have finished reading your work [3, 4]? Decide which methods and what data support each of those messages. Which references help you make the case that your work is new and significant? What conclusions can you draw from your research? This exercise will help you decide what information to include.

Draft an Outline

An outline will organize your writing and keep you from going off on tangents. It will help you develop a logical, structured manuscript that will be easily understood by reviewers and readers. It will show the order of topics you will discuss, the relative importance of each, and how they relate to each other.

Most word processing programs have a tool that makes it easy to create and edit an outline. Your outline may use phrases, complete sentences, or a combination of both. Scientific articles follow a standard structure: Introduction, Problem Formulation, Previous Research Relevant to the Problem, Methods or Model and Results, Conclusion (see Section 6). This can provide a useful structure for organizing your outline. Start by brainstorming about all of the ideas and data you want to include. Then group related ideas together. Arrange your information into subsections. Begin with general information and then move to more specific ideas. Then create headings and subheadings for each section.

If you are working with coauthors, the outline can be a useful tool to get agreement on the content and organization of the article [3].

SECTION 3 ETHICS IN SCIENTIFIC PUBLISHING

Of the many steps you will take to successfully publish your work, none is more important than following the highest ethical standards while you conduct and write about your research. You must understand what is and is not acceptable in writing your article. Cutting corners could negatively impact your reputation.

IEEE, and other reputable publishers with whom you will work, do not tolerate fraudulent research and publication. Your submission will be screened, and if you have violated any standards of publication, the consequences can be severe. Depending on the nature of the violation, corrective actions at IEEE can range from a three-year to lifetime suspension of publication privileges, public notice of the violation in the publishing journal and in IEEE *Xplore*, and referral to IEEE Ethics and Membership Committees.

Follow the guidelines below to ensure that your work is beyond reproach. If you have any questions or doubt about whether information you are including in your article is acceptable, speak with an advisor or an experienced colleague.

Who is an Author?

Authors have very clear roles and responsibilities. IEEE guidelines state that authorship and coauthorship should be based on a substantial intellectual contribution. The list of authors on a work indicates who is responsible. When you and your colleagues are evaluated for employment, promotions, or grants, the quality and quantity of your publications will be a consideration. Therefore, it is critical that the list of authors on your work includes all of those—and only those—who had a significant role in its development.

It can be considered an ethical breach if you omit an author who contributed to your work, or if you include a person who did not have much to do with it. It may be tempting to remove a colleague who is not cooperative, or who has not contributed much. But the colleague could very well file an authorship dispute with the journal. IEEE guidelines require a coauthor's permission to withdraw their name.

Adding an author who did not contribute significantly to an article is also a violation of ethics. Do not add authors simply to build up credibility. A person who made minor contributions, such as reading and giving feedback, or conducting statistical analysis, should not be on the list of authors. It may be appropriate to include this person in the acknowledgements section of your work (refer to Section 6).

Develop a list of authors that includes a description of each person's contribution to the project and the writing of the manuscript, then document the reasons for any additions or deletions of authors along the way [5].

Proper Citation of Original Work

Plagiarism

Here is an example: As you are reviewing the literature, you come across a passage that makes a point far better than you have done. You copy it and paste it into your notes. Later, when you are writing your article, you include it verbatim in your text.

Do not do it!

Copying word-for-word what another author has written, or even paraphrasing someone's original text without proper attribution is plagiarism, and plagiarism can quickly derail your career.

IEEE defines plagiarism as the reuse of someone else's prior ideas, processes, results, or words without explicitly acknowledging the original author or source. Plagiarism in any form, at any level, is unacceptable and is considered a serious breach of professional conduct, with potentially severe legal and ethical consequences. IEEE guidelines against plagiarism apply equally to periodical articles and conference proceedings.

IEEE Recognizes Five Degrees of Plagiarism:

- 1. Copying someone else's entire article, or a major portion of the article (more than 50%) verbatim, without credit to the original author(s) or copying your own previously published work (see Redundant Publication, below).
- 2. Copying a large proportion (20-50%) of someone else's work, or your own previous work, without credit.
- **3.** Copying without credit individual elements such as paragraphs, sentences, or illustrations, resulting in a significant portion (up to 20%) of an article.
- 4. Uncredited paraphrasing of pages or paragraphs from another source.
- 5. Credited verbatim copying of a major portion of an article without clear delineation, such as quotes or indents.

All sources of information, even those in the public domain, need to be properly cited.

Any ideas you have discovered elsewhere should be cited. It is rare to quote verbatim in scientific literature, but if you must, use quotation marks [3]. Experts recommend that you annotate and paraphrase to avoid plagiarism. Put what you have read into your own words, but even then you must include a citation.

Redundant Publication

Never submit work for review to more than one publication at the same time. Doing so risks being accepted by both publications and, consequently, multiple publications. Multiple publication wastes funds and space, reduces the value of periodicals to readers and libraries, and creates problems with indexing and citation. Submit to your first choice. If the article is rejected, then submit it to your second choice.

IEEE uses plagiarism detection software to screen every submitted article.

It is common in technical publishing for material to be presented at various stages of evolution. For example, early ideas may be published in a workshop; more developed work in conference proceedings; and the fully developed study may be published in a journal. However, IEEE guidelines require that authors fully cite their prior work. Authors must be able to demonstrate significant advances from prior publications. Penalties can include suspension of publication privileges in the journal or the next volume of the conference proceedings.

Copyright

When you publish a regular article with IEEE or most other organizations and professional societies, you will be required to transfer your copyright (ownership of a written work) by way of a copyright transfer form. By owning and maintaining copyright, IEEE is able to (a) protect the intellectual property and (b) make the content more widely available.

Following the transfer of copyright to IEEE, you will continue to have the right to reuse your article as follows:

- The ACCEPTED version of your article is the version which you have revised to incorporate review suggestions, and which has been accepted by IEEE for publication. The final version is the reviewed and published article, with copyediting, proofreading, and formatting added by IEEE.
- You have the right to post the ACCEPTED version of your article on your personal Web site, or on your employer's Web site, with a <u>copyright notice</u> I³ (e.g., © 2012 IEEE) displayed on the initial screen.
- You may use the ACCEPTED version of your article in your teaching, training, or work. You must acknowledge IEEE as the copyright holder, and include either a link to the original article on IEEE *Xplore* or the Digital Object Identifier (DOI), which can be found at the bottom of the first page of the final version of your article.
- You may follow the mandates of agencies that funded your research by posting the ACCEPTED version of your article in the agencies' publicly accessible repositories. You should credit IEEE as the copyright holder and include a link to the original article on IEEE Xplore or the DOI after the article is published.
- If you have posted a copy of your article on a preprint server, once you submit the final version to an IEEE publication, you should update it with a prominently displayed IEEE copyright notice. Upon publication of the article by IEEE, replace any previously posted electronic version with either the full citation to the IEEE work with a DOI, a link to the article abstract in IEEE *Xplore*, or the accepted version only (not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article in IEEE *Xplore*.

- Authors of open access articles are permitted to post the final, published version on their personal Web sites, their employers' sites, or those of their funding agencies.
- Authors are encouraged to check <u>IEEE Copyright Policies</u> [™] for updates.

Fabrication of Data

Research misconduct undermines the scientific record, destroys the trust that scientists need to verify and build on each other's results, and may even lead to serious public harm [6].

Of course, honest errors can occur and there can be legitimate differences of opinion about findings. But if you are discovered falsifying results, fabricating data, manipulating images, or engaging in other activity that misrepresents your work, you can expect serious consequences. Your job and your professional standing will be at risk.

Take these steps to protect yourself:

- ▶ Keep meticulous records of your experiments.
- ▶ Retain data records after your work is published.
- Read the Instructions for Authors for your publication or conference to understand how images should be handled. While it is usually acceptable to resize an image, enhancing an image or altering it digitally rarely is [3].

SECTION 4 SELECT AN APPROPRIATE FORMAT

There are several different categories of publications. Depending on the stage of your research or the level of information you are presenting, one may be more appropriate than another for your work. Evaluate the message you want to communicate, and then select your format.

Conference or Periodical?

Your first decision will be whether to submit your article to a journal, magazine, or other periodical, or if you should present it at a conference instead. A journal article will be a fully developed presentation of your work and its final findings. In a journal article clear conclusions can be made, firmly supported by the data available. A conference article may be written while you are still in the process of conducting your research. This may be a practical route for disseminating information about your research. Or you may want to obtain informal feedback on your ideas from your peers that you will use to inform your research project. The structure of your article will be similar whether it is a conference or journal article, however, a conference article will be shorter, it may include fewer references, and it is written in less detail.

Full Length, Original Research

Original research results are most commonly reported in a full-length journal article. A journal article will be a fully developed presentation of your work and its final findings. It presents a hypothesis, and then presents evidence to support it. Clear conclusions are made. It tries to persuade the reader of the validity of its arguments [2].

Conference Articles

A conference article may present preliminary results, or highlight recent work. The article is presented at a scientific conference and then published in the conference proceedings. The purpose of a conference article is to obtain feedback on a particular idea, and the writer uses that feedback to inform further research. IEEE guidelines require presentation at the conference.

Typically a student will write and present several conference articles before attempting an original research article.

Reviews

Review articles provide a broad analysis of the research that has been published in a particular area. Although the research is not new per se, the authors will provide new insights or introduce new theories based on their interpretations of a wide body of work.

Letters

IEEE Letters journals provide rapid turnaround for short reports on high impact new results. They provide full experimental detail and references, but are generally four or five typeset pages long.

SECTION 5 SELECTING WHERE TO SUBMIT

Selecting a Periodical

Do not wait until your article is finished to select your target journals. Make your decision early, while you are still conducting your research or during the early stages of writing. If you know what the journal is looking for, what types of articles it publishes, and who reads it, you will be more likely to develop an article that is appropriate for publication in that journal [7].

It can be overwhelming to select a journal for article submission. You are looking for a journal that will give your article the attention it deserves, by attracting readers who are likely to refer to it in their own work [4]. You want a journal that has a good reputation, so your work will have credibility. And you want a journal that supports you as an author, with an expedient process and tools to help you through the steps of publication. If you do not match your article with an appropriate journal, months may be wasted on a review that does not lead to publication [3].

There are hundreds of engineering periodicals, and probably a dozen or more with some relevance to your research. There are a number of ways to narrow your selection and find the publication most likely to be a good fit for your work. Begin by reviewing the results of your literature search. Which journals publish articles most like yours? Are there journals that came up frequently? These will likely be most closely related to your research topic.

Once you have identified four or five solid target journals, go to their Web sites. The Aims and Scope will provide a description of the types of articles the journal is looking for. Who is the editor, and who serves on the editorial board? Are these people you recognize as leaders in your field? Scan a few articles from each journal. What audience do they seem to be speaking to?

A number of metrics evaluate the influence of a journal. The Thomson Reuters Journal Citation Reports® (JCR) measure various citation factors of journals, including the important Impact Factor. Impact Factor is the average number of times articles from a journal published in the past two years have been cited in the JCR year. Another measure is Source-Normalized Impact per Paper (SNIP), which uses data from the SCOPUS database to measure contextual citation impact based on total citations in a scientific discipline. It accounts for the fact that fields such as mathematics and engineering tend to have lower impact values than the life sciences. SCImago Journal Rank (SJR) also uses the SCOPUS data and accounts for both the number of citations an article receives and the prestige of the journals that cite it. While all these metrics are valuable, remember that journals with higher metrics may not necessarily have the right audience for your article.

Determine the length of time it takes for a journal to publish articles. On IEEE *Xplore*, most journals show the date an article was received, revised, accepted, and published. Consider whether the journal has page charges, or charges for certain types of illustrations. If your targeted journal has these charges, you should have a plan to pay for them, either through your grant, your institution, or with personal funds.

Your goal is to find the journal with the broadest readership, highest impact, and greatest likelihood of publishing your work [7]. The journal with the highest impact factor or the most noteworthy editor may not deliver the best readership for your article. The truth is that high profile journals reject as many as 90% of the manuscripts submitted [2]. Making an inappropriate choice will only mean a substantial delay in getting your research to the audience that needs to hear about it.

Selecting a Conference

There are thousands of conferences held around the world every year. You can search a <u>database of Calls for Articles</u> for IEEE-affiliated conferences. Be sure that your research is a good match for a conference before you submit your article. Pay careful attention to the dates. You must be available to present your findings in person at the conference. According to IEEE Guidelines, articles that are not presented at conferences may be suppressed in IEEE *Xplore* and therefore are not indexed by or included in Thomson Reuters or Elsevier databases.

Open Access Journals

Another relatively recent option for authors is to choose open access publication for their articles. Open access provides free access to your article online to anyone who may be interested.

Open Access Models

There are several different models:

Green open access

Authors publish in a journal and then self-archive a copy of their publication on their own Web site, their institutional repository, or some other central repository. Depending upon the journal publisher's policies, the version of the article that is archived is either the final manuscript as submitted to the publisher after revisions, or the final published article. IEEE is considered a "green" publisher by SHERPA-ROMEO (www.sherpa.ac.uk/romeo/) C^{*}, a not-for-profit group that tracks publisher policies.

Gold open access

The final published article is made immediately available online by the publisher to anyone who is interested in reading it. The costs of publication are usually supported by fees paid by the author. The author's funders or institution may support the fee. Some journals waive fees for authors from developing countries.

Hybrid open access

In a hybrid open access journal, an author can choose to make an article freely available online by paying the article processing fee. If an article processing fee is not paid, the article is available to subscribers only.

Open Access Publishing at IEEE

IEEE open access policy C^{*} supports the principle of providing open access as one way to enhance the dissemination of publicly funded research to strengthen science and engineering, encourage innovation, and serve the greater interests of society. To help researchers gain maximum exposure for their ground-breaking research, IEEE offers a number of options to authors.

IEEE Hybrid Journals: Most IEEE transactions, journals, and letters offer a hybrid open access option, with traditional subscription-based content as well as open access, authorsupported content. Most of these journals have an established impact factor and are well-respected. The quality of the review process is the same for open access and traditional articles. Open access articles are published in any format offered by the journal, including print and online.

Fully Open Access Journals: IEEE publishes several fully open access journals. They are dedicated to specific subject areas, publish author-pays articles, and are delivered online only.

IEEE Photonics Journal, The IEEE Photonics Society Publication, launched in 2009, became first fully open access IEEE journal in 2012. The second, launched in 2012, is *IEEE Journal on Translational Engineering in Health and Medicine*, by the IEEE Engineering in Medicine and Biology Society. Other fully open access journals in development include *IEEE Journal of the Electron Devices Society*, produced by the IEEE Electron Devices Society, and *IEEE Transactions on Emerging Topics in Computing*, produced by the IEEE Computer Society.

IEEE Access[™]: In 2013, IEEE will launch a rapid publication, open access megajournal. This journal is aimed at a broad audience across all IEEE fields of interest, including general readers, specialists, and practitioners. There will be practical articles, as well as research articles. By adopting acceptance criteria of technical relevance and accuracy, rather than scientific importance, *IEEE Access* will create a publishing home for new authors and will engage readers among the vast number of electrical, electronics, and computer engineers who work in corporations, as opposed to universities. Dr. Michael Pecht, founder and director of the Center for Advanced Life Cycle Engineering at the University of Maryland, is the journal's inaugural editor-in-chief.

SECTION 6 DEVELOPING YOUR MANUSCRIPT

Author Responsibilities

As discussed in Section 3, there are very clear guidelines about who to include as an author. Disputes about authorship can lead to ethical inquires. You should decide who will be an author on the work as soon as possible, perhaps even before you begin your research project. Each author has a responsibility not only for the final article, but also for the design and execution of the research [3].

IEEE Publication Services and Products Board Operations

Manual (PDF, 1.2 MB) C³ states that authorship credit must be reserved for individuals who have made a significant contribution to the theoretical development, system or experimental design, prototype development, and/or the analysis and interpretation of data associated with the work reported in the article. An author must contribute to drafting the article and reviewing or revising it. Each individual named as an author must approve the final version of the article as accepted for publication, including the references.

One individual must be named as corresponding author. The corresponding author is responsible for submitting the manuscript and managing it through the review and revision process with the publisher. The corresponding author makes sure that all authors are kept apprised of the current status of the work.

Divide responsibilities among authors. Designate the best writer to draft the more textual parts of the work, such as the introduction, summary, and conclusions [2]. Other authors can take responsibility for the problem formulation and results.

IEEE leaves the order of authors to the discretion of the authors. Typically, the first author listed is the person who has taken the most responsibility for the work. Other authors are listed in order of the level of their contribution. Sometimes, the senior author is the head of the department and is listed last. Colleagues who have contributed in a non-significant way, by reviewing the article and providing feedback, for example, can be thanked in the acknowledgements section.

The First Draft

The hardest part of writing can be simply getting started. Experts recommend that you set aside time in your calendar for writing and set deadlines to stay on track. Find a quiet place and avoid interruptions. If you cannot think of the right word or you have forgotten some detail you need, do not stop to look it up. Type a placeholder such as "xxxx" or make a note using the comments feature of your word processing program. Later you can search your document for your placeholders to fix them. To maintain your momentum, do as Ernest Hemingway did: he wrote the first paragraph of the next chapter before he would stop for the day. It will give you a jump start in your next writing session.

When you are writing the first draft, do not focus so much about style or grammar. You will revise your work several times after you have written the first draft. In Section 7 you will find tips and guidance for making sure your writing is clear and grammatically correct. Follow your outline, but be open to revising it as you go along. Some ideas may become less relevant to you or your coauthors once you begin putting your article together, and new ideas will emerge.

Where to Begin Writing

Scientific and technical articles typically follow this format: Abstract; Introduction; Previous Research; Problem Formulation; Model or Methods and Results; Conclusion; References; Acknowledgements. Each section plays a different role in explaining why your research presents a new and important problem, what has been done before, and how your research substantially advances your field, as discussed in Section 2.

Many inexperienced writers start writing with the abstract. Then they move on to the introduction, the methods and results, and the conclusion. But the core of your article is the problem formulation and the methods you used to solve it. This is where you describe your unique approach to the problem and how you developed it. Because this is the material that is most familiar to you, it makes sense to start your writing with this section [8]. You can then move on to your results. Most experienced writers recommend that you write the introduction next, and then your conclusions. The abstract should be written last. After you have drafted all of the sections, you should revisit your working title to be sure it accurately represents your final work. Acknowledgements and references can be completed after the article is written.

Sections

Title and Index Terms

The purpose of your title is to grab the attention of your readers and help them decide if your work is relevant to them. As you write, develop a list of keywords that will attract your intended readers. Use these keywords towards the beginning of your title [2]. Use words that help the reader understand why your work is different from previous studies [8]. Keep your title concise. Some journals set a limit on the number of words in a title. Avoid unnecessary words. You may want to develop a list of possible titles as you develop your article, then select the best one [2].

For IEEE journals, you must provide a list of index terms or keywords that reflect the content of your article. You can select your terms from the <u>IEEE taxonomy (PDF, 375 KB)</u> ^[]. Abstracting and indexing services and search engines use the article title and index terms to help readers find your article. Think about how you would search for your article. What search terms would you use [7]? Let these terms guide your selection of index terms and the development of your title.

It is important to get your title and index terms right so that your article appears when engineers and researchers are conducting searches in your area of expertise.

Abstracts

The abstract is the last section of your article to be written because it is a condensed version of the entire article. It includes the key points of the introduction, methods and results, and conclusions. An abstract is generally 100–250 words long. It is written in the past tense. An abstract should not include references; use the background and conclusions to help frame the context of your work [9].

Readers will use the abstract to decide if your article is relevant to them. Use keywords and index terms in your abstract to capture reader interest and improve the likelihood of your article appearing in relevant searches [3]. Readers who find your article through an abstracting service may never see the rest of your article. Be sure the abstract conveys why your research problem is important and how your work moves the field forward. Reviewers also look at the abstract first. Strive to make a good impression with your abstract to engage their attention.

Introduction and Published Research

The Introduction serves to help the reader understand our three key questions: Why is this a new and important problem? What has been done before? How does your research bring significant new understanding to the field? The reader should find enough information to understand why your research was necessary, without having to refer to other source material or published works [7]. The introduction should be concise, no more than one or two pages. It is written in the present tense.

Your introductory paragraph should start with what is generally known about your subject. Then move step by step through more detailed information, ending with a description of the specific problem or hypothesis your article will discuss. Try to use an attention-grabbing statement to hook the reader [10] while being careful not to sensationalize your results.

In the next few paragraphs, refer to the published research to show what is already known about your subject and why your work is needed. Do not try to include everything from your literature review. Your goal is to orient the reader to the most relevant studies. Explain how each earlier study relates to your own approach to the problem. Does it have limitations? Does it make different assumptions [11]? Show your readers how your study builds upon or is different from this existing work. If you have published an earlier version of your work, for example as a conference or journal article, you must explain how the current study builds upon your own prior work [3].

After you have explained the historical context of your work, introduce your hypothesis and provide a general description of the results you have obtained. You will flesh these out more fully later in the article, but providing an overview here motivates your audience to read on. At the end of your introduction, tell the reader how the article is organized. This will allow readers to move to sections of particular interest, if they wish.

Problem Formulation and Results

The Problem Formulation, or Methods, section should be the first part of your article that you write. In this section, you describe the methods that you used to solve the problem, or prove or disprove your hypothesis. It includes a detailed description of the problem, defines all the terminology and the notations used, and develops the equations you used for reaching a solution. In some fields, for example, biomedical engineering, you may have to describe the materials and methods you used in your experiments.

The section should be written objectively, without analysis or interpretation. The level of detail should be enough to allow a reader to replicate your work. Reviewers and readers will evaluate this section to determine if your methods were appropriate to obtain the data you report in the results section of your article. Include only the most significant equations in the body of your article; detailed derivations can be described in the appendices [12]. Equations are numbered sequentially, and referred to in the text by their reference number.

Write the Results section of your article next. Here is where the reader or reviewer will determine if you have in fact found a better solution than previously published work. If your work is analytical, you will show results obtained from your equations; if it is experimental, then you will show experimental measurements [13]. The results will demonstrate that you have developed a new solution to a problem, and that your work is a significant advance over what has come before. The results should be clear and concise, and figures or tables will typically be used to illustrate your findings.

In some journals and disciplines, the results are presented as raw data, without interpretation. In others, results and discussion are combined. You should review representative articles in your targeted periodicals to determine which approach is preferred. In the discussion, you will interpret your results.

You should acknowledge any limitations of your study, and be absolutely certain about your conclusions.

Conclusion

This section should explain what your research has achieved, as well as the benefits and shortcomings of your solution. It is similar to the abstract, but it can provide more detail. Remind readers of the key points of each section of your article. Then provide a summary of the main findings you have reported, the important conclusions that can be drawn, and the implications for the field. You should also discuss the benefits and shortcomings of your approach, and suggest future areas for research [11]. A well-written conclusion can also help when writing the abstract.

Illustrations

Tables, graphs, and figures in your article will help clarify your ideas and support your conclusions. A figure can quickly show ideas or conclusions that would require a lot of explanation in the body of your work [12]. Because readers frequently scan the illustrations in an article without first reading the text, they should be self-explanatory. Table titles and graphic captions should help the reader understand the data. While illustrations can appear anywhere in the article, they are typically used in the results section.

Preparing your illustrations can help clarify your ideas and support your arguments. The process can make writing easier, and for that reason, you should begin thinking about your illustrations early in the process [2]. Decide which ideas or methods would be effectively presented by illustration and what format best conveys the information. A table is effective for presenting repetitive data or when it is important for the reader to see the exact values. A graph can show the relationship between data points or trends in your data.

Think carefully about how you want the illustrations to look. Be sure they are readable and easy to understand. Use thick lines and be sure that your labels are large enough to be read. Most journals charge for the use of color in printed journals, so think about how the illustration will look in black and white or greyscale. A poor image cannot be improved in the production process, so be sure that the image you submit is of high quality. Design your table or graphic to fit in the column format used by your target periodical. Resist the temptation to include too many illustrations. Each figure should be essential to your story. A good piece of advice is to ask someone who is not directly involved in your field of research to review your illustrations to see how well they communicate your message [2].

IEEE provides a number of tools, guidelines, and frequently asked questions to help you prepare your artwork for submission to IEEE *Xplore*. You can find them in the IEEE <u>Author Digital Toolbox</u> I under "Preparing Your Graphics or Multimedia Materials." You will also find a tool to check that your artwork meets IEEE publication standards I.

References

References demonstrate to the reader that you have done your homework. They show that you have researched the work that has been done. They support your argument that you have found a new and significant approach to a problem. They help you make a case for the importance of your research question.

Experts say that there are more mistakes in the reference section of an article than any other section [7, 3]. It is meticulous work, but keeping your references accurate and complete will help demonstrate the quality of your work when it goes through peer review. It will also allow your research to be more effectively used by those who come after you.

Cite only those references that directly support your work. Do not include references from "big names" just to build credibility. Try not to cite material that has not been vetted by peer review, such as theses, abstracts, and dissertations. After you have drafted your article, be sure that every reference that appears in the text has a citation in the reference section, and that every citation in the reference section is used in the text. Check your reference list against the original source material. Be sure that each part—authors' names, the article, the name of the journal or book, the page numbers, etc.—is correct.

There are a number of different formats used by journals for references. Check the Instructions for Authors for your journal and be sure you follow the style it requires. If you do not, it is likely that your submission will be returned to you. IEEE journals generally follow a citation number system. The first source cited is assigned number 1; the second source is assigned number 2; and so on. Later citations to a source use the original number no matter where they appear in the text. The <u>IEEE citation reference style (PDF, 319 KB)</u> ^[] is supported by a number of reference manager software tools. These tools can help you easily record and use citations.

If you do not have access to a reference management tool, use the author's name and year of publication in parentheses as your in-text citation while you work on your article. As you make revisions and move text around, it will be easier to keep track of your references than using a numbering system. When you are working on your final revision, replace the in-text citations with numbers.

The <u>IEEE Reference Preparation Assistant</u> C² is an automated tool that validates references against both the IEEE *Xplore* and CrossRef databases to ensure successful online linking. You should use the Assistant before submitting an article to IEEE.

Authorship Footnote, Acknowledgements, and Author Bibliography

In most IEEE journals, an unnumbered footnote appears on the first page of the article. It includes the date you submit your article (the date of revision and acceptance will be filled in later). This is also where you should disclose any financial support. The affiliations of all authors are included here.

In the Acknowledgements section, recognize individuals who provided technical or other assistance to your work but who do not qualify to be included as authors, as discussed above. Examples are a statistician who helped with analysis or a graphic artist who created images. You might also include colleagues who reviewed your article prior to submission or who gave you other feedback on your research.

Most IEEE journals provide space for author biographies at the end of an article. The biography includes a photograph of each author and his or her educational and work background..

Formatting Your Article

Follow the Instructions for Authors

Every journal has guidelines or instructions for authors published in the journal or on the journal's Web site. You can usually find the document in the first issue of a volume year. Follow these guidelines closely or your article may be returned to you. The guidelines include technical specifications for preparing your article, including the format (e.g., type size, font, headings, column width), article length, instructions for handling figures and tables, and reference format.

LaTeX vs. Word

LaTeX is a document preparation system designed for technical and scientific communication. It produces professionally typeset documents. With LaTeX, you do not format as you type. Instead, you write in a plain text file and enter commands to indicate where text needs to be styled in a particular way (e.g., title, section heads, figures, and captions). The software creates a final typeset output.

LaTeX handles equations particularly well. In Word, you must use the mouse to insert mathematical symbols. In LaTeX, you type the equations on the keyboard using commands to indicate the correct formatting. Because you are entering plain text, editing a LaTeX document can be easier. Figures are correctly placed. LaTeX can automatically generate references and indexes. Another benefit is that it is available free of charge.

LaTeX has a learning curve and is highly customizable, but it is recommended that authors avoid customization as much as possible in order to minimize errors in the production process that can be caused in the conversion of a file from a custom to standard version of LaTeX.

Word can produce a reasonably professional document with very little training. You can see how your document will look as you are writing it. It also includes features that can help in editing your article, such as spell check and grammar check.

IEEE Templates

IEEE Author Digital Toolbox I includes a number of tools and information to assist with article preparation, including the **IEEE Style Manual (PDF, 319 KB)** I, with editorial guidelines for publishing in transactions, journals, and letters. You will also find the IEEE taxonomy, a reference preparation assistant, and a tool to check your PDF to ensure it complies with IEEE *Xplore* requirements.

Use the <u>Templates for preparing your articles</u> **C** for submission in either LaTeX or Word. Most, but not all, IEEE journals use these templates. Check the home page of your individual journal for any special requirements.

Guidelines for conference articles can vary depending on the organizer. IEEE offers a number of <u>templates for conference</u> organizers **C**. However, you should refer to the conference Web site for specific instructions.

Whether you use Word or LaTeX to prepare your work, you should follow the instructions you will find in TRANS-JOUR. DOC or TRANS-JOUR.PDF in the toolbox. If you are using Word, you should use the .doc version of the template to prepare your article. Either type directly into the template, or cut and paste from another document. Your text will automatically appear in the IEEE double column format. The template and instructions will show you how to properly format section headings, import and size your artwork, and check that your graphics are suitable for an IEEE publication. Depending on the publication, artwork can either be placed within in the text, or at the end of the article. IEEE will do the final formatting of your article. The template also includes information on formatting for references and equations, units, and IEEE editorial policies. You should delete the instructions text before you save the final version of your article.

SECTION 7 IMPROVING AND REVISING

When you write the first draft of your article, do not be overly concerned with grammar and format. No one writes a perfect first draft. You will go through a number of revisions to make your article clear, concise, and readable.

It helps to read a lot of articles in your discipline. After a while, you will begin to understand what makes a good article stand out. Every discipline has a unique way of expressing ideas or concepts, and you will learn how to write in the language of your field [4].

Good science is what is most important in your article. But if your article is poorly written, then the Editor and reviewers may not be able to appreciate the full impact of your work. An article with serious grammar, language, or spelling problems may be returned for editing before it is even thoroughly reviewed. Revise your article, and then revise it again. Do not let your writing detract from the science.

How to Revise

Set your article aside for a few days after you have completed the first draft, so you can return to it with a fresh eye. Read all the way through it first, without changing anything. Some people prefer to read a printed version. You may find it helpful to read the article aloud during a later revision cycle. This will help you spot missing words, incorrect use of words that sound the same but have different meanings, and other grammatical errors that can be overlooked in print. Keep an original copy of your first and all subsequent drafts. As you go through many rounds of revisions, it may be useful to refer back to your earlier work. On your first pass, identify areas where there are obvious problems with the scientific content. Take notes but do not correct anything. Then go through and resolve each problem you have found. Then review your work again. Once the science in order, move on to editing the structure and language[4].

Does the order of your presentation make sense? Try rearranging some sections to improve the flow. Be a strict editor. Remove any information that does not support your key messages. Is every table and graph you have included necessary? Remove any that are redundant or that do not communicate an important result. Would an additional illustration clarify a result? Finally, review for usage, spelling, and grammar. Do not rely solely on the spell checker in your word processing program.

Polishing

Outlined below are some common best practices and errors typically found in engineering articles. However, there are many outstanding references for editing guidance. See the <u>IEEE Style</u> <u>Manual (PDF, 319 KB)</u> ^C for specific editorial guidelines for IEEE journals, transactions, and proceedings. For spelling, IEEE uses Webster's College Dictionary, and for additional grammar and usage help, refer to The Chicago Manual of Style, published by the University of Chicago Press.

Making Your Article Interesting to Read

Write in paragraphs, not long blocks of text [12]. Every paragraph should have a topic sentence, supporting sentences that build on that key message, and a summary sentence. Vary the length of your paragraphs to make your article easier to read. Think about the transition from one paragraph to the next. Is there a logical progression?

Write clear, simple sentences in the form of noun-verb-object. Varying sentence length can make an article more engaging. Compound sentences add variety and are useful for comparing ideas [12]. Every word in a sentence should contribute something; eliminate unnecessary words.

Avoid the passive voice, in which the subject is acted upon. In the active voice, the subject performs the action. "It was hypothesized," is passive; "We hypothesized," is active. The active voice is more interesting and less ambiguous. Edit passive sentences to active sentences as much as possible.

Write in the first person ("I," "we") to make it clear who has done the work and the writing. It is particularly helpful when you are comparing your work to someone else's work [3].

The abstract and the methods section will be written in the past tense, because they describe work that you have already done. The Introduction and Discussion section are usually written in the present tense, because they describe knowledge that currently exists.

Syntax

Syntax refers to how words are arranged in a sentence, and how they relate to each other. Many of the problems found in scientific articles relate to syntax.

These errors can be particularly confusing:

Introductory phrases

Avoid unnecessary phrases such as "Obviously," or "As previously mentioned." Don't use "This" at the beginning of a sentence. It can be ambiguous.

Subjects and verbs must agree

Singular nouns require singular verbs and plural nouns require plural verbs: "The engineer says," "The engineers say."

Misplaced and dangling modifiers

Modifiers are words or phrases that provide a description in a sentence, but when they appear in the wrong place they can be confusing. A misplaced modifier is incorrectly separated from the word it modifies. Do not say "Reading the Aims and Scope, the journal would be a good fit for my article." Say "Reading the Aims and Scope, I realized the journal would be a good fit for my article." A dangling modifier modifies an unintended word because it is in the wrong place in the sentence. Do not say "The engineer wanted a cold glass of water;" say "The engineer wanted a glass of cold water."

Use Words Carefully and Correctly

- Do not use slang in your article. Be cautious about using technical jargon that may not be understood by an international audience outside of your immediate subspecialty.
- The words "that" and "which" are often confused. Restrictive clauses are essential to the meaning of the sentence, and use "that." "The article that was written by Prof. Smith was accepted by the journal." If you take out the words "that was written by Prof. Smith," you are no longer referring to a specific article. Use "which" when the phrase can be left out. It is usually set off with commas: "The article, which was accepted by the journal, was written by Prof. Smith."
- Avoid abbreviations if possible. If you do use one, define it in parentheses after the first use of the phrase.
- Use simple, common words: "start" instead of "initiate." "Use" instead of "utilize."
- Try to avoid "lazy" verbs such as demonstrate, exhibit, present, observe, occur, report, and show. Use your word processing program to find these words in your document and find a different way to express your idea [2].
- ► The IEEE Style Manual (PDF, 319 KB) C³, section VI, details some mistakes common to articles in engineering. "Data" is plural, not singular. Use the word "alternatively" to present an option, not "alternately," unless you are actually discussing something that alternates. Do not use the word "issue" when you mean "problem."

Punctuation

- Semicolons, colons, and dashes should be used sparingly in scientific articles.
- > Use commas to add clarity and emphasis.
- The possessive singular of nouns is formed by adding an apostrophe: engineer's article.
- > Use a series comma after each term except the last.
- Do not use double parentheses in text, but do keep them in math.

Measurements and Numbers

Refer to the IEEE Style Manual (PDF, 319 KB)

Tips for Non-English Speakers

Editors want their journals to reflect the global contributions of science and are generally receptive to reviewing contributions from non-English speakers. They will be interested in your article if it presents a good and important problem that significantly advances the field. The rules are the same for all writers: submit an organized, interesting, and clearly written article. If your article is poorly organized, or if the science is not good, publication is less likely [7].

Write in a clear, matter-of-fact style. Avoid a narrative or story-telling approach. Include the most relevant published research, but do not provide a lengthy historical overview.

Pay attention to structural differences that might make your meaning hard to understand. As discussed earlier, you should write in the first person ("I" or "we"). The first sentence in a paragraph states the main point, and the remaining sentences present information related to that point. In English, the subject comes at the beginning of the sentence, followed by the noun and the object. Other languages may, for example, place the verb at the end of the sentence. There are also differences in the use of punctuation such as commas and quotation marks. It is not acceptable to copy someone else's writing in English language journals. Put other people's ideas into your own words, and use a citation to show where the idea came from. If you are quoting someone word for word, you should use quotation marks. Do not cut and paste someone else's writing into your article.

If possible, ask an English-speaking colleague to review your article for language and grammar. Never use an online tool such as Google Translator to translate your writing into English. Such tools do not translate accurately. In general IEEE editorial staff will work with you to correct or question grammatical errors, obvious inconsistencies or omissions, spelling, and punctuation. But they will not edit technical content or writing style. For a fee, the IEEE English-language editing service article will work with you to improve the clarity and organization of your article.

Internal Review

Your coauthors should review drafts and revisions because they have equal responsibility for the article. When you are confident that your article is grammatically clean and well-structured, it is time to ask internal colleagues and/or your department head to review your article. Ask these reviewers to check that your methodology is appropriate and that you have interpreted the data correctly. In addition to asking colleagues who are very familiar with your field of study, consider getting a review from someone outside your discipline. An outsider will be able to tell you if your article is coherent and easily understood.

SECTION 8 SUBMISSIONS

Before you submit your article to a journal or conference, you should do one last, thorough review of your work.

Review the Instructions for Authors, found on the journal or conference Web site or in an issue of the journal (typically in the first issue of the year). Check that your article adheres to the guidelines for reference style, headings, and illustrations. Proofread one last time. Check again that every citation in the reference section is cited in the text, and that every text citation is included in the list of references. Check that every figure and table is accurately cited in the text.

Cover Letter

Your cover letter is your first chance to make a good impression on the journal editor (conference article submissions do not require a cover letter). Help make the editor's job easier by explaining how your article fits the scope of the journal [4]. Discuss how your article addresses a new and important problem, and how it advances the field. Confirm that the work is original and that it has not been submitted to any other publication. It should be brief and business like. Check the journal Web site to be sure you have the name of the current editor, and use it in the salutation.

Your cover letter should include:

- ➤ The name of the journal you are submitting to, because editorial offices may handle more than one journal.
- > The title of your article.
- The name and current place of employment of each contributing author.
- The corresponding author's full contact information, including address, fax number, phone number, and e-mail address.
- An explanation of any special requirements, such as special features or unusual length.

Journal Submissions

Many journals now require electronic article submission. Most, but not all, IEEE journals use the ScholarOne Manuscripts system. Electronic submission saves time, money, and effort for everyone. Authors do not have to submit multiple copies of the article and artwork, and the system automates the review process to make it more efficient.

It can take an hour or so to enter all the data about your article and upload your files. You can pause and save the work you have already done. Have all the information you will need at hand: cover letter and article file, the names and affiliations of your co-authors, the illustrations, and the names and contact information for your preferred reviewers (see Section 9).

To access the ScholarOne site for your journal, go to the journal's homepage in IEEE *Xplore* and click on the "Submit a Manuscript" button.

If you have not done so, you will be prompted to establish an account. You will first enter the title and abstract for your article. Next you will enter the keywords or index terms you selected when you were writing your article. You will enter the names and affiliations of all of your coauthors, and then the names and contact information for at least two preferred reviewers. You can upload your cover letter, or type it directly into ScholarOne Manuscripts. Then you will upload all documents for your article: the manuscript and, if relevant, separate files for the images and any ancillary documents. Upon completion of the submission process in ScholarOne Manuscripts, you will be asked to electronically transfer copyright to the IEEE though the use of the IEEE eCopyright Form C³.

ScholarOne Manuscripts allows you to track the progress of your article through the peer review process. After your article has been reviewed and accepted for publication, and after you have made any necessary revisions, in most cases you will be instructed to return to your ScholarOne Author Center to upload your final article for production.

ScholarOne Manuscripts 🗗 provides training and troubleshooting information for IEEE authors.

Conference Submissions

Guidelines for submission of an abstract and/or article to a conference for peer review vary widely depending upon the conference organizer. Follow the instructions on the organizer's Web site.

IEEE works with the organizers of the more than 1,200 sponsored and affiliated conferences to ensure that all articles submitted for publication on IEEE *Xplore* and the Computer Society Digital Library meet a minimum standard for print and electronic publishing. IEEE eXpress Conference Publishing and IEEE Computer Society Conference Publishing Services provide tools and templates C^{*} so that authors can correctly format their PDF documents for publication and properly assign copyright. You will receive instructions from your conference organizer.

Remember that your article may be excluded from IEEE *Xplore* and the Computer Society Digital Library if you do not appear at the conference to present your article.

SECTION 9 PEER REVIEW

In the peer review process, qualified individuals evaluate the quality, relevance, and appropriateness of an article for a particular journal. Peer review improves science. It confirms that published work has been tested and validated.

Peer review offers an opportunity for your work to be evaluated by your peers. The peer review process will almost certainly provide feedback that will improve your work and make your article stronger. Although some feedback can be disheartening, be open to the reviewers' comments and consider how you can construct a more valid and convincing argument as a result.

All scientific articles and communications published in regular IEEE periodicals are reviewed by at least two referees who have experience in the area of the subject matter of the article. IEEE also requests that conference organizers implement a process for review by independent referees who are knowledgeable in the subject area.

How Peer Review Works

While the journal editor-in-chief is responsible for the content of the journal, many journals have associate editors who handle the peer review process for certain subject areas. After you submit your article, a first pass will be done to determine if it is within the scope of the journal, readable, and that the quality of the science presented is acceptable. A very poorly written article, or one that is simply not relevant to the journal, is likely to be rejected at this point.

As part of the submission process, you will be offered the opportunity to recommend potential peer reviewers for your article. You should nominate individuals who you know will understand your research and the related literature. The associate editor may select one or both of your recommendations for review or may choose other reviewers from the journal's network. At least two reviewers will be assigned. Reviewers maintain anonymity from the authors.

A reviewer will evaluate your article to determine:

- Does it address a new and important problem?
- ▶ Is the material original?
- Are the methods and rationale valid?
- Do the conclusions make sense?
- ▶ Is it clearly written?
- > Do the illustrations, tables, and charts support the text?
- > Are the references current and relevant to the subject?
- ► Is the content appropriate, in scope and level, for the journal [9]?

The reviewers will recommend whether the article should be published as is, or if changes would improve the science as it is presented. The editor-in-chief will weigh the comments from the reviewers before making a final decision. If the reviews are mixed, the editor-in-chief decides whether to publish the article, and decides which revisions recommended by the reviewers will be passed back to the author.

A word about the timing of reviews: Most editors-in-chief, and all reviewers, are volunteers. When reviewers are approached to do a review, they are asked if they have adequate time in their schedule to meet the deadline. Despite this, a reviewer may miss a deadline if his or her own work interferes. Some delay is not unusual.

Review Outcomes

Most articles that are submitted for publication are rejected. The top journals can reject 90 to 95% of all submissions. Just because your article is rejected does not mean that you should consider abandoning your research or discontinuing your efforts to publish. The review process may give you some guidance about how to improve your writing, or additional experimental work to do, to improve the likelihood of acceptance in the future.

There are three possible outcomes to the review. You should read the communication from the journal carefully to be sure you fully understand the status of your publication:

ACCEPT AS IS: This is extremely rare. Very few articles will be accepted without the need for any editing or revision.

MODIFY YOUR ARTICLE: This can take a few different forms. Your article may be "accepted with modifications." This means that if you make the changes recommended, your article will be accepted and published. You may be asked to make some editing changes, add additional references, or check some calculations, for example. Alternatively, you might be informed that you should "modify and resubmit" your article. The science in your article may have been interesting, but there are some shortcomings that need to be addressed. If you address these concerns, you are encouraged to resubmit your article to the journal. It may or may not undergo additional review.

REJECTED: If there is no encouragement to revise your article and resubmit it, then it was deemed unsuitable for the journal. This does not necessarily mean that your article is flawed. Remember, some journals reject up to 95% of the articles submitted. It is possible that your article just has not met a particularly stringent set of requirements.

Here are some reasons for rejection:

- > The content is not a good fit.
- There are serious scientific flaws—inconclusive results, incorrect interpretation.
- ▶ It is poorly written.
- It does not address a big enough problem or advance the scientific field.
- > The work was previously published.
- > The quality is not good enough for the journal.
- ▶ Reviewers have misunderstood the article.

Response Letter and Article Revision

If the journal recommends that you revise your article, you will receive a list of the specific concerns and issues from the reviewers. Do not let this discourage you, and do not take the criticisms personally. Remember, editors-in-chief and reviewers want to help you publish good science. When you receive the reviewers' comments, do not respond immediately. Put them aside for a few days, while you think about what your response should be and what you may need to change.

Evaluate the feedback you receive. No author is right 100% of the time, and neither is any reviewer [4]. It is possible that a reviewer misunderstood something in your article. There may be conflicting comments from different reviewers. However, if all reviewers agree on a particular point, there probably is a valid concern. Some comments may be relatively minor.

Go through your article, point by point, to address the issues raised in the reviews. Keep detailed notes about the changes you have made or additional work you have done. Your response letter should be polite, respectful, and detailed. Be sure to address every reviewer comment. It does not make sense to pick fights over minor edits. But if you believe a criticism is not valid, provide a strong, assertive rebuttal and support your comments with a literature reference, if possible [3]. Remember, the editor and the reviewers are volunteering their time—thank them for their comments.

If Your Article is Rejected

If your article is rejected, try to understand the reasons. Was it out of scope? Then you should go back to your original list of target journals and find one that is better suited to the content and level of your work. If there were serious flaws in the science, or if you did not provide enough new information to warrant publication, then you have additional work to do before you can rewrite and submit the article to another journal.

Peer Review—An Editor's Perspective

In an editorial in *IEEE Signal Processing Magazine* [14], 2012–2013 Signal Processing Society President K.J. Ray Liu asks, "Some say that peer review is not perfect, but it is the best system our journals have. Is that so?" An associate editor, who selects the reviewers and then must make an informed, fair decision based on their feedback, has a difficult job since every reviewer has a different viewpoint. Prof. Liu notes that an explosion in article submissions, leading to a shortage of qualified reviewers, has made the associate editor's job even more challenging. In response, the IEEE Signal Processing Society has introduced systematic training for associate editors. Associate editors must be senior enough, with technical authority, to be able to make timely and informed judgments. They must be well connected with a wide network of potential reviewers who can conduct a fair review. "Qualified and trained associate editors are essential to the success of the peer review process," says Prof. Liu. He concludes that "peer review is the best system our journals can have, only if we do it right!"

SECTION 10 THE FINAL STEPS

You have revised your article and returned it to the editorial office. In the near future it will appear on IEEE *Xplore* alongside the most significant articles published in your area of research. There are a few final steps you will take, however, before your article can be published in print and online. And the appearance of your article in print and online is not the end of the story.

Reviewing Page Proofs

When you submit the final version of your article to the journal, it may be copy edited. A copy editor will correct any grammatical and spelling errors. The copy editor will also question anything that is inconsistent or doesn't make sense. These questions are referred to as author queries.

At some point before the publication of your article in most IEEE journals, you will receive notification that the proof of your article is ready for your review. A proof is the article formatted as it will appear in the journal and on IEEE *Xplore*. The margins of the proof will include notations to indicate where the copy editor had questions or made changes. For most IEEE journals you will receive an e-mail that will include a unique Web link, a login ID, and password. Once you log in, you will have access to a high-resolution PDF of your article to download and review. You will also find a list of author queries raised by the copy editor. Instructions will be provided on how to mark your corrections and responses to author queries, either on the PDF using Adobe Reader or directly through the Web site used to facilitate author proof review

This is not the time to add new information or make any substantive changes to your article. Any material you add now has not gone through peer review and cannot be published except in the most extraordinary circumstances. You should review the proof to correct the rare error that you missed when you prepared the final version of your article, and any errors that were introduced in the formatting of your article. You will also have to respond to each author query. Finally, you will review the tables, charts, and illustrations and the citations and references. You are responsible for the quality control of your article [7]. Check your proofs carefully. Even though the process is largely electronic, errors can creep in. So review the proof word by word. Pay careful attention to numbers. As suggested in Section 7, it is good to read the text out loud, or to have someone else read it out loud while you follow along. If you can, ask someone who has not been involved in the article to review it.

Check to see that your illustrations are placed properly within the text and are not upside down or sideways and that the reproduction is acceptable. Is the quality of the photographs satisfactory? Are they too light or too dark? Review the captions, headings, and labels.

Take the time to review your proofs carefully, but do it promptly. Most journals request that proofs be returned within 48 hours. Your article may be slated to appear in a specific issue of the journal, and adhering to the deadline set by the publisher will prevent any delays in publishing your article.

Page Charges, Reprints, Open Access Fees

Some business issues are usually handled during this phase of publication. When you receive your proofs, you will also receive an invoice for any page or color charges you have incurred. You will also get a form to order reprints. Article reprints are used less frequently now that articles are widely available in electronic format. You may want to order 100 or so to send to countries where Internet service is less reliable, or to include in presentation packets. Note that open access fees are collected upon acceptance of the article.

Publication

Once you have returned your proofs, the publisher will make corrections. Depending on the journal, your article may appear online in advance of publication in the print journal. Some journals post articles to IEEE *Xplore* as preprints, within one to three days of acceptance. Others post final articles in an Early Access section of the journal or directly into the issue in which the article will appear in print. E-mail trans@ieee.org or your staff editor to find out when your article will appear. You may receive a printed, bound copy of the issue in which your article is published. Some journals provide printed copies for coauthors as well; check the Instructions for Authors to find out if your journal does so.

Discoverability of Your Article

Your article is now available to be read and cited by your peers. But to do so, readers must be able to find it. IEEE uses different approaches to make your article "findable." There are also some things you can do to help improve your article's visibility.

Abstracting and Indexing Services

IEEE partners with the major abstracting and indexing providers such as Google, CrossRef, Elsevier, Thomson Reuters, ProQuest, IET, and NLM. These tools are very important for helping researchers discover relevant scientific literature. They are frequently where authors begin their literature review.

Your Article on IEEE Xplore

IEEE *Xplore* is designed to help researchers quickly and consistently find high quality articles in their field. Your article will appear in search results fast, and in the right context. IEEE *Xplore* is one of the world's largest collections of high quality technical literature in engineering and technology.

Article alerts, which notify researchers when new content is available in the journals of interest to them, help to increase the visibility of your articles. Frequently accessed and newly published articles and journal issues are highlighted on the IEEE *Xplore* main page. IEEE Marketing campaigns bring new and popular journal articles to readers' attention.

What You Can Do

Take advantage of the opportunities that IEEE offers you to bring your article to the attention of your peers. As discussed in Section 3, you can post the accepted version of your article on your personal Web site or on your faculty page. You can use your article for teaching and training. Articles can be posted in repositories. Although the distribution of article reprints is less common these days, you can alert colleagues to your new publication by sending an e-mail with the article URL. You should be proud to be an author whose work is available along with that of nearly two dozen Nobel-prize winning innovators on IEEE *Xplore*!

SECTION 11 APPENDIX

Online Resources for Authors $\ \ \square$

INTRODUCTION	(PAGE 2)
IEEE Xplore digital library	www.ieee.org/ieeexplore
ETHICS IN SCIENTIFIC PUBLISHING	(PAGES 5–7)
IEEE Copyright Notice	www.ieee.org/publications_standards/publications/rights/rights_policies.html
IEEE Copyright Policies	www.ieee.org/publications_standards/publications/rights/copyrightpolicy.html
SELECTING WHERE TO SUBMIT	(PAGES 9–10)
Database of Calls for Articles	www.ieee.org/portal/pages/iportals/conferences/callforpapers/index.html
IEEE open access policy	www.ieee.org/open-access
DEVELOPING YOUR MANUSCRIPT	(PAGES 11–15)
IEEE PSPB Operations Manual	www.ieee.org/documents/opsmanual.pdf
IEEE taxonomy	www.ieee.org/documents/2009Taxonomy_v101.pdf
IEEE citation reference style	www.ieee.org/documents/ieeecitationref.pdf
IEEE Author Digital Toolbox	www.ieee.org/publications_standards/publications/authors/authors_journals.html
IEEE Reference Preparation Assistant	http://refassist.ieee.org/action/showAuthorLogin
IEEE Style Manual	www.ieee.org/documents/stylemanual.pdf
Templates for preparing your articles	www.ieee.org/publications_standards/publications/authors/author_templates.html
Templates for conference organizers	www.ieee.org/conferences_events/conferences/publishing/templates.html

IMPROVING AND REVISING	(PAGES 16–19)
IEEE English-language editing service	

SUBMISSIONS	(PAGES 20-21)
IEEE eCopyright form	www.ieee.org/publications_standards/publications/rights/copyrightmain.html
ScholarOne Manuscripts	http://mchelp.manuscriptcentral.com/gethelpnow/
Templates for conference submissions	www.ieee.org/conferences_events/conferences/publishing/templates.html

SECTION 11 APPENDIX

References

- [1] 1790 Analytics LLC, Copyright 2012.
- [2] J.R. Matthews and R.W. Matthews, *Successful Scientific Writing: A step-by-step guide for the biological and medical sciences.* Cambridge, UK: Cambridge University Press, 2008.
- [3] R.J. Gladon, W.R. Graves, J.M. Kelly, *Getting Published* in the Life Sciences, Hoboken, NJ: Wiley-Blackwell, 2011.
- [4] M. Cargill and P. O'Connor, *Writing Scientific Research Articles: Strategy and steps.* Chichester, UK: Wiley-Blackwell, 2009.
- [5] IWCSA Report (2012). Report on the International Workshop on Contributorship and Scholarly Attribution, May 16, 2012. Harvard University and the Wellcome Trust. <u>http://projects.iq.harvard.</u> <u>edu/attribution_workshop</u>
- [6] N.H. Steneck, "Fostering Integrity in Research: Definitions, Current Knowledge, and Future Directions, "Science and Engineering Ethics, Vol. 12, No. 1, pp. 53–74.
- [7] R.A. Day and B. Gastel, *How to Write and Publish a Scientific Paper*, Westport, CT: Greenwood Press, 2006.
- [8] M.M. Pierson, B.L. Pierson, "Beginnings and Endings: Keys to Better Engineering Technical Writing," *IEEE Trans. Prof. Commun.*, vol. 40, no. 4, pp. 299–304.
- [9] M. Christopher and K. Young: *Writing for Publication in Veterinary Medicine*. Hoboken: Wiley-Blackwell, 2011.
- [10] S.A. Socolofsky: How to Write a Research Journal Article in Engineering and Science, 2004, available: <u>https://ceprofs.civil.tamu.edu/ssocolofsky/</u> downloads/paper_how-to.pdf
- [11] I. Stojmenovic, "Editor's Note: How to Write Research Articles in Computing and Engineering Disciplines," *IEEE Trans. Parallel Distrib. Syst.*, vol. 21, no. 2, pp. 145–147.

- [12] C.A. Linte, "Writing for Publication in Biomedical Engineering," *IEEE Eng. Med. Blol. Mag.*, vol. 27, no. 3, pp. 7–11.
- [13] R.T. Compton, Jr. "Fourteen Steps to a Clearly Written Technical Paper," reprinted by *IEEE Trans. Circuits Mag.*, Vol. 8, no. 5, Sept. 1992.
- [14] K.J. Ray Liu, "Peer Review," *IEEE Signal Processing Mag.*, vol. 29, no. 8, p. 8.

IEEE would like you to reach your full potential as a published author.

Visit www.ieee.org/go/authorship Browse www.ieee.org/ieeexplore

IEEE 445 Hoes Lane Piscataway, NJ 08854 USA

IEEE EDITORIAL STYLE MANUAL

IEEE Periodicals Transactions/Journals Department 445 Hoes Lane Piscataway, NJ 08854 USA

Advancing Technology for Humanity

© 2014 IEEE

V7 09-22-2014

TABLE OF CONTENTS

3

I. Introduction 3

A. Purpose of Manual 3 B. IEEE Transactions Editing Philosophy C. Preprinting 3 D. Rapid Posting 3 E. Continuous Pagination 4 Print Collections Index of Contents Blanks and Announcements F. Article Numbering 4 G. Public Access 4 H. Open Access 4 I. Creative Commons Attribution 5

II. Editing Principles 6

A. Editing the Parts of a Paper 6 Paper Title Byline and Membership Citation **IEEE Membership Grades** Invited Paper Line Running Heads **Copyright Lines Open Access** 1) OAPA 2) CCBY First Footnote B. Editing the Body of a Paper 13 Abstract Index Terms Nomenclature **Text Section Headings** Introduction **Text Equations** Appendix Acknowledgment References Text Citation of Figures and Tables Republished graphics Biographies Squibs D. Other Text to Edit 19 Footnotes Lists in Text Note Added in Proof E. Other Types of Papers 20 Editorials **Brief Papers** Short Papers, Correspondence, and Communications Comments and Replies Corrections **Book Reviews** Obituaries/In Memoriam F. Editing Style for Transactions 22 Acronyms Spelling

Trademarks Plurals Hyphenation Rules The En, Em, or Two-Em Dash Grammar Contractions Capitalization Math Equation Numbers Displayed Equations Typical Problems

G. General Layout Rules 26

III. Grammar and Usage in Transactions 27

A. Rules of Grammar 27 B. Words Often Confused 27

IV. Editing Mathematics 29

A. The Language of Math 29 B. In-Line Equations and Expressions 29 C. Break/Alignment Rules 30 D. Exceptions and Oddities 30 E. Headings for Theorems, proofs, and *Postulates* 31 F. Text Equations 31 G. Reminders 31 H. Short references List of Italics, Roman, and Small Capitals 32 I. Functions and Operators Always Set in Roman Font 32 J. Glossary 33 K. The Greek Alphabet 33 V. Editing References 34 A. Citing References 34 B. Style 34 Periodicals Books Reports Handbooks Published Conference Proceedings Papers Presented at Conferences Patents Theses (M.S.) and Dissertations (Ph.D.) Unpublished Standards C. On-Line Sources 38 Books, Monographs Periodicals Papers Presented at Conferences Reports and Handbooks U.S. Government Documents Patents Manuals/Software

D. Common Abbreviations of Words in References 40
E. IEEE Transactions, Journals, and Letters Abbreviations 43
F. IEEE Magazines Abbreviations 48

VI. Appendix 49

Some Common Acronyms and Abbreviations 49
I. INTRODUCTION

A. Purpose of Manual

This style manual provides general editing guidelines for IEEE Transactions, Journals, and Letters. For guidance in grammar and usage notincluded in this manual, please consult *The Chicago Manual of Style*, published by the University of Chicago Press.

B. IEEE Transactions Editing Philosophy

The IEEE's responsibility in editing papers for the Transactions is not to make any determination on or do any editing of the technical content of the papers we work with, but is instead to render the work as readable, grammatically correct, and as consistent with IEEE style as possible.

Since we are concerned with style mainly in the sense of IEEE house style, we do not try to change an author's style of writing. We do a mechanical edit to correct or question grammatical errors, obvious inconsistencies or omissions, spelling, and punctuation. Since we work with highly technical text, we also do extensive formatting of mathematical material.

Some manuscripts require closer editing than others. Some papers, for example, are from authors unfamiliar with the English language. Often, an IEEE Staff Editor must walk a fine line in determining how to correct a grammatical error or in deciding what can be safely changed or corrected without altering the author's original meaning. Because of the highly technical nature of the material we deal with, and because of our often limited understanding of that material, it is especially important that we as Staff Editors do not risk making any unnecessary changes or any that may affect the author's meaning.

Sometimes there are cases where it is simply not possible for us to decipher an author's meaning or to find a way to correct a sentence. In these cases, a judgment is made either to query the author on the proof about the passage in question, to directly contact the author, or in rare cases, to work with the Transactions Editor or Guest Editor to clarify the material.

For a new Staff Editor, experience, familiarity with the material in this guide, and continued consultation with the training of IEEE Staff Editors will lead to an understanding of how much in a paper to change or question and what form those changes or questions should take.

C. Preprinting (Pre-edit Rapid Posting)

Preprinting is a term used to define the process of posting an author-submitted PDF of his/her manuscript online on the IEEEXplore site. This is done within a day or two of receipt at the IEEE. The author is required to include a signed copyright form with their submission package. If the form is not provided, the paper cannot be preprinted. On Xplore, it appears under "Early Access." This version of the paper has been accepted for publication by IEEE, but has not yet been edited and may not have been assigned to a print issue. A paper that has been preprinted is considered published.

In the blue-i, in WMS, journals that are set up to be preprinted will show **Preprint=Yes** in the **Production Tab**. Therefore, there is text in the first footnote of the final version that reflects this. The date the preprinted proof is available on Xplore is considered the **date of publication**. This date populates WMS in the **First Published Date** field under the **Production Tab**.

D. Rapid Posting (Post-edit Rapid Posting)

Rapid Posting is a term used to define the process of posting the author-approved edited version online. This is done within 3 weeks of receipt at the IEEE for a fully edited article, and within 2 weeks of receipt for a moderately edited article. The running head will contain only the publication title. The page numbers would contain generic numbers (e.g., 1 - 10). On Xplore, the article can be found under "Early Access." Once the article is assigned to a print issue, the article is paginated, and the running head is "opened up" and will contain the volume, issue, month , and year.

In the blue-i, journals that are set up to be rapid posted will show **Rapid Post=Yes** in the **Production Tab**. A paper that has been preprinted is considered published. Therefore, there is text in the first footnote of the final version that reflects this. The date the preprinted proof is available on Xplore is considered the **date of publication**. This date populates WMS in the **First Published Date** field under the **Production Tab**.

E. Continuous Pagination

In a continuously paginated journal, each individual article goes through the entire workflow process, is assigned an issue, real-time page numbers, and finally posted to Xplore at the issue level. These articles may already be either pre-printed or rapid posted, not both. **Note:** Once the paginated article is on Xplore, no changes to the content or page layout may occur.

The running head should not indicate a month till the very end of the process. (Note to staff: The <proddate> tags for "first publication and current version..." are suppressed till author review, and unsupressed prior to final posting to Xplore.)

- <u>Print Collections</u> In addition, several journals have *Print Collections*. A print collection is a literal collection of online issues collected into one print edition. For this reason, additional concerns must be taken into considering when paginating. Each online issue will contain an Index of Contents listing of the papers in the issue. Due to postal requirements, in a print collection, a blank page MUST precede the Index of Contents in subsequent issues. The first article must begin on a verso page. Therefore, if the last page of one print collection ends on an even number (left-hand side), TWO blank pages must be left in order to start the next issue on the right-hand side.
- In Print Collections, the front cover will contain information reflecting the pages on which the Index of Contents will appear in each issue. Staff may refer to the "Table of Contents (ToC)" section for more information.
- Some publications may also choose to include a graphic on the front cover. Staff may refer to the ToC section for more detail.

F. Article Numbering

Article numbers are applied under the continuous pagination model. All papers in process are assigned article numbers and posted to Xplore as final, in the appropriate issue in which they are to appear. In the 7-digit article number, the first two digits within the subject category, the following three digits are the sequence number (for the year), and the last two are the page count. Example: 5701712

G. Public Access

If the government agency that funded this paper requires that the paper be deposited in an institutional repository in order to be made publicly available (there is not a consistent policy among government agencies), the author should comply with the requirement and submit the paper. We will send him the paper as accepted for publication, in PDF format through the Author Gateway, once the paper has been finalized. This is the version he should submit to the institutional repository. IEEE requires that the paper not be deposited before 12 months from the date of publication of the paper, unless the agency policy is different.

H. Open Access

Open access (**OA**) means unrestricted online access to peer-reviewed scholarly research. There are two ways to make an article openly available: 1) through author self-archiving in an OA repository, also known as 'green' OA, or 2) through publishing in an open access journal, known as 'gold' OA.

With green OA, authors publish in any journal and then self-archive a version of the article for *gratis* public use on the author's personal web site, on a server operated by the author's employer, or on a server operated by an approved not-for-profit third party. IEEE allows its authors to follow mandates of agencies that fund the author's research by posting accepted versions of their articles in the agencies' publicly accessible repositories.

With gold OA, authors publish in Open Access journals, which provide immediate, free access to all of their articles, usually on the publisher's website. ("Hybrid" gold OA journals are subscription journals that provide gold open access only for those individual articles for which their authors (or their author's institution or funder) pay an article processing charge.

I. Creative Commons Attribution (CC BY)

Some funding agencies require that authors use specific publication licenses in place of a traditional copyright transfer if a portion of their grants are to be used to pay article processing charges (APCs). Two such funding agencies are the Wellcome Trust and the Research Councils of the United Kingdom (RCUK), both of which require authors to use the CC BY license. In addition, some authors whose work has not been supported by such funding agencies also want to use the CC BY license. In either case, these authors should explicitly declare their interest in having their papers published under a CC BY license to IEEE staff editors upon submitting their manuscripts.

Interested authors may also e-mail a request to <u>copyrights@ieee.org</u>. The e-mail should declare the author(s) interest in submitting their manuscripts under a CC BY license and should also provide basic information about the manuscript (e.g., author names, article title and IEEE publication title to which the manuscript is being submitted). Authors who need to satisfy their funding agency's specific requirement(s) should also identify the specific agency. The IEEE IPR Office will respond with an acceptance letter indicating that the use of the CC BY license has been approved.

II. EDITING PRINCIPLES

The sections of a paper should generally be edited in the following order:

- 1) Title Page (including paper title, byline, membership, first footnote including Digital Object Identifier (DOI) information, running head, and copyright line)
- 2) Abstract, must be one paragraph, and no more than 250 words. A minimum of 150 words are suggested, but not mandatory.
- 3) Index Terms
- 4) Nomenclature (optional)
- 5) Introduction
- 6) Body of Paper
- 7) Conclusion
- 8) Appendix(es)
- 9) Acknowledgment
- 10) References
- 11) Figure and Table Captions
- 12) Photos and Biographies

A. Editing the Parts of a Paper

Paper Title

In the paper title, capitalize the first letter of the first and last word and all nouns, pronouns, adjectives, verbs, adverbs, and subordinating conjunctions (*If, Because, That, Which*). Capitalize abbreviations that are otherwise lower case (i.e., use DC, not dc or Dc) except for unit abbreviations and acronyms. Articles (*a, an, the*), coordinating conjunctions (*and, but, for, or, nor*), and most short prepositions are lower case unless they are the first or last word. Prepositions of more than three letters (*Before, Through, With, Versus, Among, Under, Between, Without.*) should be capitalized. Example:

- Nonlinear Gain Coefficients in Semiconductor Lasers: Effects of Carrier Heating
- Self-Pulsation in an InGaN Laser $\frac{1}{m}$ Part I: Theory and Experiment

Byline and Membership Citation

Check authors' names against biographies and editorial correspondence (compare to *IEEE Membership Directory* listing if necessary). Use the longest and most complete name given in either the biography or byline. Use the same information in both places. Always defer to the author's wishes if changes are made in the proof stage. Nicknames are not allowed in the byline, but may be included in the biography. Examples:

C.-Y. Chen, *Member, IEEE*, K. S. Snyder, Jr., *Fellow, IEEE*, and J. Fortunato, III, *Senior Member, IEEE*

Mohammed Z. Ali, Member, IEEE, and Murat Torlak, Fellow, IEEE

Check the manuscript byline and biographies to see if IEEE membership information has been provided by the author. If so, verify the information in the *IEEE Membership Directory* and enter it into the byline and into the biography.

IEEE Membership Grades

Student Member, Graduate Student Member, Associate Member, Member, Senior Member, Fellow, Life Associate Member, Life Member, Life Senior Member, and Life Fellow. The highest grades other than Affiliate Members are listed in the byline. All grades are listed in the biography. Life Members carry the highest previous grade in their byline.

NOTE: Affiliate Members are not considered members for the purposes of the byline and biography. An affiliate of an IEEE Society is not an IEEE member, but rather an individual who has been admitted by a

Society with the special rights and privileges of that particular organization within the IEEE. In general, an affiliate must have attained stature in a related scientific and technical field, comparable to that for IEEE membership.

Invited Paper

If the EIC notes that a paper is an Invited Paper either directly on the hard copy, on the table of contents, or elsewhere, use an Invited Paper line between the byline and the text of the paper. Insert a 12-pt. space between the byline and the words "(*Invited Paper*)." Also be sure to include the Invited Paper line directly after the title on the table of contents. Example in a byline:

Shadow Codes and Weight Enumerators

Steven T. Dougherty, Fellow, IEEE

(Invited Paper)

Example in a table of contents:

Shadow Codes and Weight Enumerators (Invited Paper) S. T. Dougherty 24

Running Heads

Transactions contain two types of running heads: issue and author. Running heads appear in 7-pt. capitals.

Issue Running Heads appear on all left-hand (verso) pages of full length papers, on all first pages of full length papers, and on both left and right pages of all other types of papers. Issue running heads consist of the full name of the Transactions, volume number, issue number, month, and year. Note that the volume number of a Transactions increases by one at the start of every calendar year. The format used is as follows:

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 3, MARCH 2014

Author Running Heads appear on all right-hand (recto) pages of full length papers (except the first page of papers). The author running heads are written by Staff Editors and should appear on the author's proof. Guidelines for writing author running heads are as follows.

- Use only the most important words; it should be the gist of the title.
- For a very long title, try to find the critical phrase or phrases.
- Frequently, it is possible to eliminate adjectives completely.
- If units of measure, chemical compounds, mathematical terms, etc., must be included in the running head, stet the use of lower case as determined by IEEE style.
- Use 7-pt. caps for all author names, e.g., SMITH, DIBENEDETTO, MCLEAN
- Do not include Jr., Sr., III, etc., in running heads.
- Do not exceed one line.

The format used for author running heads is as follows: *For one author:*

SPINA: MODELING OF HIGHLY EFFICIENT GRATING FEEDBACK

For two authors:

BONIFAS AND RICCARDELLA: DYNAMICS OF AlGaAs SEMICONDUCTOR LASERS

MACGREGOR AND GROVER: ROUTING OF TRANSPORT NETWORK DEMANDS $\stackrel{1}{-}$ I

Note: Parts, e.g., part I, is written only as "I" in the running head, preceded by an emdash. The subtitle is **not** included.

For three or more authors: ANDERSEN et al.: DYNAMICAL MODEL OF DC WAVEGUIDE LASERS

Copyright Lines

Authors of non-OA articles must sign and return the IEEE Copyright Form before their paper is published (either online or in print). A paper is considered published on the date it appears on IEEE*Xplore* (this includes pre-prints, rapid posts). The section of the form signed determines the type of copyright line used.

There are several different types of copyright lines used in Transactions papers.

The *IEEE copyright line* is by far the most commonly used line. The IEEE copyright line Copyright Clearance Center Code (or CCC code) is used at all times whenever the "A" section of the IEEE copyright form has been signed by the author. The author's signature on the "A" section of the IEEE copyright form and use of the IEEE copyright line indicate IEEE ownership of the paper's copyright.

The following is a sample IEEE copyright line from the IEEE JOURNAL OF QUANTUM ELECTRONICS:

0018-9197 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See <u>http://www.ieee.org/publications_standards/publications/rights/index.html</u> for more information.

The first two sets of four numbers (separated by an hyphen) in the line are the ISSN code for the Transactions (also found on the front cover of the printed book). (Note: the price information was omitted in 2013. This appeared before the copyright symbol representing the amount the IEEE charges per copy when permission is granted to use IEEE copyrighted material.) Last on the line is a circled copyright symbol followed by the full year of publication and the identifier "IEEE."

Other types of lines may be used when certain conditions are met.

The U.S. Government copyright line is used when the "B" section of the copyright form is signed and all the authors of a paper are U.S. government employees and prepared the paper as part of their job. The U.S. Government line reads:

U.S. Government work not protected by U.S. copyright.

NOTE: This copyright line ends with a period.

The EU copyright line is used when all authors are employed by one or more European Union organizations.

The following is a sample EU copyright line from the IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY:

1051-8223 © 2014 EU

The *Crown Copyright line* is used when the "C" section of the copyright form is signed and all the authors of a paper are employees of the British or British Commonwealth governments. The Crown Copyright line is similar to the IEEE copyright line, except that the "IEEE" at the end of the line is replaced with "British Crown Copyright" or "Canadian Crown Copyright" as follows:

The following sample copyright lines are from the IEEE JOURNAL OF DISPLAY TECHNOLOGY:

1551-319X © 2014 British Crown Copyright 1551-319X © 2013 Canadian Crown Copyright

Rapid posted/pre-printed papers: If you are posting papers in 2013 for a print issue in 2014, please note the year in the copyright line MUST be the year of online publication. Also, note the copyright line (year) information will NOT change when the article is printed in 2014.

Note this applies to all models of publication, rapid post, preprint, and continuous (e.g., JSEN, JQE, LPT). That is, rapid-posted, preprinted, or continuously paginated articles that posted to IEEE*Xplore* in 2013, but will be printed in 2014, should carry a copyright year of 2013.

Open Access

http://www.ieee.org/publications_standards/publications/rights/oapa.pdf

Q: Do authors need to sign an IEEE copyright transfer form for an OA article?

Not in every case. The standard document for an author to authorize publication of an article supported by an article processing charge (APC) is the IEEE Open Access Publishing Agreement (OAPA). This form transfers copyright to IEEE, while assuring that IEEE will make the article freely available to all visitors to IEEE *Xplore*. The OAPA gives IEEE full authority to resolve any complaints of abuse (such as plagiarism) of the authors' content.

IEEE will make exceptions for authors who have special requirements from their funding agencies to publish their OA articles with a Creative Commons Attribution (CC BY) license. Two such funding agencies are the Wellcome Trust and the Research Councils of the United Kingdom (RCUK), both of which require authors to use the CC BY license. IEEE will accept use of the CC BY license in these cases. Authors with a funding requirement to use the CC BY license should not sign the OACF, but instead should request a CC BY license.

Q: What if the authors choose both OAPA and are also US Government employees? Which copyright form do they sign?

ANS: Section (2) of the OAPA copyright form.

How do an author obtain the Creative Commons Attribution (CC BY) license?

Authors who choose to submit their manuscripts under a CC BY license, or whose research has been supported by any funding agency and are required to submit their manuscripts under a CC BY license, will need to provide a letter or e-mail to the editorial staff or the IEEE Intellectual Property Rights Office, in which they must clearly state their interest in submitting their manuscript under a CC BY license. The letter must also provide basic information about the manuscript (e.g., author names, article title, and IEEE publication title to which the manuscript is being submitted). Authors will receive an acceptance letter indicating that the CC BY license has been approved.

Authors who submit a manuscript and opt for a CC BY license are required to accept the Terms & Conditions of IEEE in order for their paper to be published and posted in IEEE *Xplore*. Authors who choose to submit under a CC BY license will be subject to the publishing policies and procedures of IEEE.

The IEEE Open Access Publishing Agreement (OAPA)

With the OA publication model comes a new IEEE Open Access Publishing Agreement, which is available for immediate use. The agreement serves four important purposes:

- 1. An explicit promise is made to OA authors that IEEE will present their work with free access to all users.
- 2. OA authors are assured that they are free to post the final, published version of their articles on their personal Web sites, their employers' sites, or their funding agency's sites.
- 3. The OAPA gives IEEE sufficient legal rights to resolve any complaints of abuse (such as infringement and plagiarism) of the authors' content.
- 4. The OAPA allows users to copy the work, as well as to translate it or to reuse it for text/data mining, as long as the usage is for non-commercial purposes.

IEEE authors who want to submit their manuscripts under an OA license are encouraged to use the IEEE OAPA.

Open Access copyright lines

OAPA:

1949-3029 © 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications/rights/index.html for more information.

U.S. Government + OAPA

U.S. Government work not protected by U.S. copyright.

CCBY License:

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

First Footnote

The first footnote (or the author affiliation paragraph) is made up of three paragraphs. This footnote is not numbered. All other footnotes in the paper are numbered consecutively. Do not use asterisks or daggers.

An example follows:

Manuscript received April 27, 2012; revised September 18, 2012; accepted July 25, 2013. Date of publication August 15, 2013; date of current version September 09, 2013. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, under Project PN-II-ID-PCE-2011-3-0566.

The authors are with the National Institute for Lasers, Plasma and Radiation Physics, Plasma Physics and Nuclear Fusion Laboratory, 077125 Bucharest-Magurele, Romania (e-mail: <u>florin.gherendi@infim.ro</u>; mnistor@infim.ro; mandache@infim.ro).

Color versions of one or more of the figures are available online at http:// ieeexplore.ieee.org. Digital Object Identifier 10.1109/JDT.2013.2278036

The first paragraph of the first footnote contains the *received* and (possibly) *revised* dates, followed by the *accepted* date of the paper. When a paper has more than one revised date, list all the dates given. Effective June 2008, it also contains the *two additional online published dates*. The first date identifies the date of publication, i.e., when the "single article" version is posted on Xplore (either preprint or rapid post—ePub date); the second date identifies when the "final, paginated" version (date of current version—predicted online date) is posted on Xplore.

China-affiliated authors may request the name of the corresponding author to be listed in the first footnote. This is added in italics at the very end of the first paragraph. See examples of various footnotes below.

Manuscript received May 2, 2011; revised September 9, 2011; accepted October 12, 2011. Date of publication November 29, 2011; date of current version March 7, 2012. This work was supported by the National Basic Research Program (973 program) of China under Grant 2012CB619302 and Grant 2011CB301903, by the National High Technology Research and Development Program (863 program) of China under Grant 2011AA03105, and by the Innovative Doctoral Student Training Program in Sun Yat-sen University. (*Corresponding authors: Jessie Y. C. Chen; Shiyuan Fan.*)

Manuscript received April 27, 2012; revised September 18, 2012; accepted July 25, 2013. Date of current version September 09, 2013. This work was supported by the UEFISCSU under Grant PN-II 65/01.10.2007 and Grant PN-II 331/01.10.2007. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Vesa Valimaki. (*Corresponding author: Jun Ming.*)

Equally contributed authors: In some case, the authors may request credit be given to specific auhors who have contributed equally to the work. This is added in italics at the very end of the first paragraph before the corresponding author. See examples of various footnotes below.

Manuscript received May 2, 2011; revised September 9, 2011; accepted October 12, 2011. Date of publication November 29, 2011; date of current version March 7, 2012. This work was supported by the National Basic Research Program (973 program) of China under Grant 2012CB619302 and Grant 2011CB301903, by the National High Technology Research and Development Program (863 program) of China under Grant 2011AA03105, and by the Innovative Doctoral Student Training Program in Sun Yat-sen University. (Shanjin Fan and Shiyuan Fan contributed equally to this work.) (Corresponding authors: Jessie Y. C. Chen; Shiyuan Fan.)

Examples (Traditional - articles not preprinted or rapid posted):

Manuscript received April 27, 2012; revised September 18, 2012; accepted July 25, 2013. Date of current version September 09, 2013. This work was supported by the UEFISCSU under Grant PN-II 65/01.10.2007 and Grant PN-II 331/01.10.2007. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Vesa Valimaki. (*Corresponding author: J. Ming.*)

Manuscript received June 10, 2014; revised July 29, 2014; accepted July 31, 2014. Date of publication August 29, 2014; date of current verson October 2, 2014.

Note: There is only one final date. The "published" date here is acquired from IDAMS data.

Examples (print collections (continuous)----articles published online (continuously) with pagination, e.g., LPT, JQE:

Manuscript received April 27, 2012; revised September 18, 2012; accepted July 25, 2013. Date of publication August 15, 2013; date of current version September 09, 2013. (*Corresponding author: J. Ming.*)

Examples (preprinted or rapid posted articles):

Manuscript received November 07, 2013; revised January 20, 2014; accepted February 09, 2014. Date of publication March 11, 2014; date of current version April 29, 2014.

Manuscript received December 14, 2006; revised November 8, 2007 and February 8, 2008; accepted February 20, 2008. Date of publication June 8, 2008; date of current version January 29, 2009.

Manuscript received June 10, 2014; revised July 29, 2014; accepted July 31, 2014. Date of publication August 29, 2014; date of current verson October 2, 2014.

Manuscript received February 22, 2009; accepted March 3, 2009. Date of publication June 8, 2009; date of current version August 29, 2009.

Manuscript received January 15, 2013; revised April 10, 2013; accepted April 29, 2013. Manuscript received in final form on May 20, 2013. Date of publication September 8, 2013; date of current version January 18, 2014.

In some Transactions, the *Volunteer Associate Editor* who processed the paper is listed next in the first paragraph, and this is referred to as a "recommended line." See specific Transactions for placement and wording. Some examples are:

Manuscript received February 5, 2007; revised March 29, 2007; accepted March 29, 2007. Date of publication June 8, 2007; date of current version January 18, 2008. Paper recommended by Associate Editor Thomas Lynch.

Manuscript received February 5, 2007; revised March 29, 2007. Date of publication June 8, 2007; date of current version January 18, 2008. This paper was recommended by Associate Editor T. Lynch.

Manuscript received July 4, 2007; revised September 4, 2007. Date of publication June 8, 2007; date of current version July 18, 2008. This work was supported by the UEFISCSU under Grant PN-II 65/01.10.2007 and Grant PN-II 331/01.10.2007. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Vesa Valimaki. (*Corresponding author: J. Ming.*)

All *financial support* for the work in the paper is listed next in the first paragraph and not in the Acknowledgment at the end of the paper. Examples of financial support acknowledgment are:

- 1) This work was supported by the National Science Foundation under Grant 90210 and Grant ECS-12345.
- 2) This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under Contract 12345 and Contract 702589 and in part by the National Science Foundation.
- 3) This work was supported by grants from the Muscular Dystrophy Association of America and the Swedish Medical Research Council.
- If an author/organization requests specific wording, e.g., by National Institutes of Health (NIH), use language provided.

If support was given to a *specific* author, the following wording is used:

The work of C. T. Walsh was supported by the National Institutes of Health.

Information of full or partial *prior presentation* of a paper at a conference may be included in the first paragraph of the first footnote. It may not be necessary, however, to cite prior presentation of a paper at a conference if the paper is appearing in a special issue made up exclusively of papers presented at the conference.

If a paper is a thesis or part of a thesis or dissertation, this should be so noted in the last sentence of the first paragraph of the footnote.

Below is a sample of a first paragraph of the first footnote:

Manuscript received January 15, 2008; revised April 10, 2008; accepted April 29, 2008. Manuscript received in final form on May 20, 2008. Date of publication September 8, 2008; date of current version January 18, 2009. This work was supported in part by the National Science Foundation under Grant GK-716, by the Joint Services Electronics Program under Contract AF-AFOSR-128-94/95, and by the Adolph C. and Mary Sprague Miller Institute for Basic Research in Science. This paper was presented in part at the Fourth (*or 4th*) Annual Allerton Conference on Circuit and System Theory, University of Illinois, Urbana, IL, October 1995.

The second paragraph of the first footnote is made up of the authors' affiliations, and the corresponding author's email address. There are instances when several authors may want their email addresses included. E-mail addresses are separated by semicolons. Examples are shown below.

For one author or if all authors have the same, or more than one affiliation:

The author is with the Department of Electrical Engineering, Rutgers University, Piscataway, NJ 08854 USA, and also with Bellcore, Morristown, NJ 07960 USA (e-mail: author@ieee.org).

The author(s) is (are) with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: corresponding-author@ieee.org).

K. Gong is with the Tsinghua National Laboratory, Beijing 10084, China, and also with Tianjin University, Tianjin, 300725, China (e-mail: gongk@tsinghua.edu.cn).

The authors are with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: <u>firstauthor@mit.edu</u>; <u>IamNext@mit.org</u>; thirdauthor@ieee.org).

Two or more authors: For two or more authors with different affiliations, use separate sentences and paragraphs for each, using all initials with a surname. Group the authors with the same affiliation together; list the affiliations according to the order of the first author listed in the byline for each location. Email addresses are separated by semicolons. Examples:

L. P. Li is with the Department of Electrical Engineering and the Electronics Research Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA.

T. Ikeda and H. Ishikawa are with Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-01, Japan (e-mail:correspondingauthor@ieee.org).

The authors are with Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-01, Japan, and also with the Department of Electrical Engineering and the Electronics Research Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA (e-mail: <u>corresponding-author@ieee.org</u>).

If an author had one affiliation at the time the paper was written and a new one at the time of publication, list the information as follows:

The author was with the Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181 USA. He is now with the Institute for Microstructural Sciences, National Research Council, Ottawa, ON K1A 0R6, Canada.

If an author is on leave from his current position, list the information as follows:

The author is with the Faculty of Information Sciences and Engineering, University of Canberra, Canberra, A.C.T. 2616, Australia, on leave from the Department of Electronic Engineering, Zhengzhou University, Zhengzhou, China.

Additional Examples:

Retired author:

L. A. Tepper, retired, was with the Applied Research Laboratory, Bellcore, Morristown, NJ 07851 USA. He resides in Laguna Niguel, CA 92677 USA (e-mail: retiredauthor@yahoo.com).

Deceased author:

P. Dorigo, deceased, was with the Progetto di Intelligenza Artificiale e Robotica, Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milano, Italy.

Consultant:

P. Leff Jr. was with the Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 USA. He resides in Charlottesville, VA 22908 USA.

Additional Notes:

- Do not include street addresses of employers. For domestic authors, use official U.S. Postal Service abbreviations for states and include U.S. zip codes, and country. Use Canadian Province and international codes as listed in this manual. Also include international cities, countries, and zip codes.
- List department or subdivision first, then company or school. Write out the words "Company" and "Corporation." Abbreviate "Inc." and "Ltd." (One exception to this is Texas Instruments Incorporated.)
- At the request of some societies, most Transactions include e-mail addresses in the affiliation. The standard usage of e-mail addresses is to list the address at the end of the affiliation line for that particular author.

E-mail listing for one author:

R. A. Morgan is with the Department of Information Technology, Honeywell Corporation, Bloomington, MN 55420 USA (e-mail: r.morgan@empire.honeywell.com

E-mail listing for more than one author:

H. Saidi and P. S. Min are with the Department of Electrical Engineering, Washington University, St. Louis, MO 63130 USA (e-mail: saidi@rgit.wustl.edu; psm@ee.wustl.edu).

- In a book review, to avoid confusion with the author of a book, when listing the affiliation of the reviewer of a book, do not use "The author is with ..."; instead, list the reviewer's affiliation ("The reviewer is with ...").
- Except in rare cases (e.g., IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING to indicate the corresponding author), asterisks or daggers are not acceptable means of referencing a footnote in IEEE Transactions.

The third or final paragraph of the first footnote contains the Digital Object Identifier (DOI). (The DOI system m was conceived by the Association of American Publishers (AAP) in partnership with the Corporation for National Research Initiatives and is now administered by the International DOI Foundation. Essentially, the DOI system is a scheme for Web page redirection by a central manager.) In January 2004, the IEEE adopted the use of the Digital Object Identifier system to provide unique identification of documents and facilitate on-line publication. The purpose of the DOI is to describe the structure and assignment of an identification code for publication items (articles) within publication types (journals and books).

The DOI consists of the following:

- 10.1109 identifies IEEE Publication;
- the calendar year of the date of assignment;
- a number unique to the publication item within the publication type.

An example of the DOI as it appears in the first footnote is as follows:

Digital Object Identifier 10.1109/JQE.2004.834561

The DOI is the last line of the author affiliation paragraph.

NOTE: It is very important that this number appear correctly in print. It will be a permanent means of identifying the document. If the printed DOI number does not match the database assigned DOI number, errors will result when linking the electronic version of the document.

C. Editing the Body of the Paper

Abstract

Every published paper must contain an Abstract; request one immediately from the EIC and/or author if it is not provided with the manuscript. Abstracts appear in text in 8-point boldface type per Transactions specs. All variables should appear lightface italic; numbers and units will remain bold. Abstracts should be a single paragraph. By nature, Abstracts shall not contain numbered mathematical equations nor numbered references. Numbered reference citations are not allowed. If a citation is made, reword the sentence to exclude citation numbers.

In order for an abstract to be effective when displayed in *IEEE Xplore*® as well as through indexing services such as Compendex, INSPEC, Medline, ProQuest, and Web of Science, it must be an accurate, stand-alone reflection of the contents of the article.

The abstract must be a concise yet comprehensive reflection of what is in your article. In particular:

- The abstract must be self-contained, without abbreviations, footnotes, or references. It should be a microcosm of the full article.
- The abstract must be between 150-250 words. Be sure that you adhere to these limits; otherwise, you will need to edit your abstract accordingly.
- The abstract must be written as one paragraph, and should not contain displayed mathematical equations or tabular material.
- The abstract should include three or four different keywords or phrases, as this will help readers to find it. It is important to avoid over-repetition of such phrases as this can result in a page being rejected by search engines.

• Ensure that your abstract reads well and is grammatically correct.

Index Terms

All papers must contain Index Terms. These are keywords provided by the authors. Request them if they are not provided. Index Terms appear in bold type in the same style as the Abstract, in alphabetical order, and as a final paragraph of the Abstract section. Separate Abstract and Index Terms by a 6-pt. space. Capitalize the first word of the Index Terms list; lower case the rest unless capitalized in text. Include the definition of an acronym followed by the acronym in parentheses. Example:

Index Terms—Abstraction, computer-aided system engineering (CASE), conceptual schema, data model, entity type hierarchy, ISO reference model, layered architecture meta model, reverse engineering.

Note to Practitioners

This is formatted in the same style as Abstracts. It follows the Abstract and is separated by a line space. There may be more than one paragraph. The text appears in **boldface** and in 8-point type. Example:

Note to Practitioners—Abstraction, computer-aided system engineering (CASE), conceptual schema, data model, entity type hierarchy, ISO reference model, layered architectural meta model, reverse engineering.

Note Added in Proof: This added information is usually inserted at the end of the Conclusion section of the paper or in whatever section contains the last paragraph of the main body of the paper. (See p. 18.)

Nomenclature

Nomenclature lists (lists of symbols and definitions) generally follow the Abstract and Index Terms and precede the Introduction. This type of list is characterized by the following.

- 1) The Nomenclature heading is a primary heading without a Roman numeral.
- 2) The first column of the list is flush left.
- 3) The second column is aligned on the left.
- 4) There is one em space from the longest item on the left side to the right side.
- 5) The first letter on the right-hand side is capitalized.
- 6) Each item ends with a period.
- 7) Do not use "is" or "the" at the beginning of items.
- 8) Do not use equality symbols between the left and right sides.

Equations in an item should be handled as follows.

- 1) When the equation is at the beginning of an item, align the equal sign with the right-hand side capitals, end the equation with a period, begin the definition with a capital, and end with a period.
- 2) When the equation is at the end of an item, end the definition with a comma, follow with an equal sign and the rest of the equation, then end with a period.

NOMENCLATURE

S	PQ	Strictly proper pole constraints.
\boldsymbol{N}	1	Minimal weighted sensitivity.
P	$\mathbf{P}(s)$	Physical feedback.
V	V	Weighting.
Q)	= P - 1. Improper function.
S	, l	Signal density, $= P, M.$

NOTE: Acronyms defined in a Nomenclature list do not need to be defined again in the text. If the section headings are made up of only previously defined acronyms, we should continue to add the acronym in parentheses next the the definition, as it becomes unreadable otherwise.

Text Section Headings

Standard specifications have been established for Transactions text section headings. There are four levels of section headings with established specs: primary (section), secondary (subsect1), tertiary (subsect2), and quaternary (subsect3) heads.

Enumeration of section headings is desirable, but is not required. Follow the author's preference. However, the choice must be consistent throughout the paper. That is, if an author enumerates some but not all section headings, the remaining headings in the paper should be labeled so that all headings and all levels of section headings in the paper are enumerated.

Author enumeration notation that is not in IEEE style should be changed to IEEE style. For example, if an author labels primary headings with capital letters, they should be changed to Roman numerals to match IEEE style. The remaining style rules for each level of section heading as listed below should also be followed.

Primary headings (section) are enumerated by Roman numerals, centered above text, and set in 10-pt. and 8-pt. caps. Note that Introduction, Conclusion, and Acknowledgment are Singular heads. Example:

I. INTRODUCTION

Secondary headings (subsect1) are enumerated by capital letters followed by periods ("A.," "B.," etc.), flush left, italic, upper and lower case. Example:

A. Formal Frameworks

Tertiary headings (subsect2) are enumerated by Arabic numerals followed by parentheses. They are indented one em, run into the text in their sections, italic, upper and lower case, and followed by a colon. Example:

1) Sophisticated Local Control: Sophisticated local control is applied when ...

Quaternary headings (subsect3) are identical to tertiary headings, except that they are indented two ems instead of one em, lower case letters are used as labels, and only the first letter of the heading is capitalized. Example:

a) Communication policies: Policies developed to improve communication ...

Reference and Acknowledgment headings are unlike all other section headings in text. They are never enumerated. They are simply primary headings without labels, regardless of whether the other headings in the papers are enumerated. Example:

REFERENCES

ACKNOWLEDGMENT (note spelling here)

Appendix headings are a special case. The primary heading(s) in the Appendix or Appendixes (note spelling of plural) are set according to the usual style, except that there is flexibility in the enumeration of the heading. The author may use Roman numerals as heading numbers (Appendix I) or letters (Appendix A). Either is acceptable. The Appendix is not preceded by a Roman numeral. Follow the rules given earlier for labeling subsidiary heads. Note that if there is only one Appendix in the paper, leave the Appendix unnumbered and unnamed as is. (Appendix subheads should also not be enumerated in this case.) Examples:

APPENDIX

APPENDIX I PROOF OF THEOREM

APPENDIX A PROOF OF THEOREM

Headings for Theorems, Proofs, and Postulates: Some papers do not conform to an outline style for theorems and proofs that is easily transformed into the normal heading sequence. The preferred style is to set the head giving the theorem number as a tertiary heading (no Arabic numeral preceding) and the proof head as a quaternary head. This rule also applies to Lemmas, Hypotheses, Propositions, Definitions, Conditions, etc.

In-text references to text sections are written: "in Section II" or "in Section II-A" or "in Section II-A1." Capitalize the word "Section." Do not use the word "Subsection"; use "Section" and write out the complete citation.

Introduction

Initial Cap or Drop Cap: In full length papers and/or editorials (but not in short papers), the first letter of the Introduction is set as an initial cap, two lines deep (drop cap). After the cap, the next 8–12 characters (1–2 words) are capitalized. (Do not break up hyphenated words into cap and lower case sections—extend the caps if necessary.)

If it is not possible to use the first word or character of the Introduction as an initial cap (i.e., if the paper begins with a quotation mark), try rewriting the sentence and query the author. See Section II-A of this guide for type specs of the initial cap.

Text Equations

Consecutive Numbering: Equations within a paper are numbered consecutively from the beginning of the paper to the end. There are some Transactions in which an author's own numbering system such as numbering by section, e.g., (1.1), (1.2.1), (A1), is permitted.

Appendix Equations: Continued consecutive numbering of equations is best in the Appendix, but if an author starts equation numbering over with (A1), (A2), etc., for Appendix equations, it is permissible to leave the copy as is.

Hyphens and Periods: Hyphens and periods are accepted, if consistent in paper, e.g., (1a), (1.1), (1-1). This should be done consistently throughout the paper.

Appendix

Refer to the Appendix in text as "given in the Appendix." Note that the plural of Appendix is Appendixes. Also note that all figures and tables in the Appendixes must be labeled in consecutive order with the other figures in the paper. Never start a separate numbering system or group of numbers for the figures or tables in the Appendix section.

Acknowledgment

The placement of the Acknowledgment appears after the final text of the paper, just before the References and after any Appendix(es). The spelling of the heading for the Acknowledgment section is always singular, with no "e" between the "g" and the "m." As noted previously in the Text Headings section, the Acknowledgment head is a primary heading. Do not enumerate the Acknowledgment heading.

When citing names within the Acknowledgment, use first initials only, not full names. Drop Mr., Mrs., or Miss (list first initial and last name only). For Dr. or Prof., use the Dr. or Prof. title with each name separately; do not use plural Drs. or Profs. with lists of names.

All acknowledgments of financial support must be removed from the Acknowledgment section and placed in the first footnote/author affiliation.

Any acknowledgments of permission to publish and disclaimers to the content of the work made to/by the author's employer may be added as an Acknowledgment section.

Rewrite the Acknowledgment section to be read in the third person. Rewrite it even if the paper is given in the first person.

References

A few guidelines related to the editing of references are summarized here. See Section V of this manual for a more complete discussion of reference style.

The numbering of references is employed by citing one reference per number. Every reference in a Transactions reference list should be a separate number entry. Use of one reference number to designate a group of references is not preferred, and is discouraged. If the author-supplied reference list is unnumbered, the Staff Editor must provide numbers, or if the list contains multiple references, these should be separated and renumbered by the Staff Editor. If numbering or renumbering is necessary, then in-text references to the reference list must be checked and renumbered by the Staff Editor.

Footnotes or other words and phrases that are part of the reference format do not belong on the reference list. These full footnotes or extraneous phrases must always be removed from the list, changed into text or footnotes on the appropriate page, and the references renumbered (renumber reference citation in text as well). Even the words "For example" should not introduce references in the actual list, but should instead be included in parentheses in text (or in a footnote), followed by the reference number, i.e., "For example, see [5]."

Do not say "in reference [1] …"; rather, the text should be edited to read simply, "in [1] …" The author's name should not be included in a text reference with a number (i.e., "In Smith [1]") and should be changed to "in [1]" except in such cases where the author's name is integral to the understanding of the sentence (e.g., "Smith [1] reduced calculated time …"). Reference dates should not be used as reference identifiers and should be deleted in text except in rare cases where the date is somehow relevant to the paper's subject.

Sometimes an author will refer to a specific figure of a reference or to a specific page or equation from a reference. To avoid confusion, rewrite phrases such as "in Fig. 2 of reference [1]" to the IEEE cross-reference notation "in [1, Fig. 2]." Similarly, rewrite phrases such as "in equation (8) of reference [1]" to be [1, eq. (8)]. Other phrases may be rewritten as [1, Sec. IV], [1, Th. 4.2], or [1, Ch. 3].

If an author lists the same reference more than once on the reference list, giving a new reference number for each page or part of the same source that is cited, these separate references should all be made into one reference and the separate citations of pages, equations, etc., should be made in text using the notation explained in the previous paragraph.

If a reference author's name is mentioned in text, check its spelling against the reference list.

Text Citation of Figures and Tables

All first citations of figures and tables in the paper must be in numerical order. If a figure is not mentioned or if the first text mentions are not in order, call or query the author and/or renumber the figures where necessary. Citations to figures in text always carry the abbreviation "Fig." followed by the figure number. The abbreviation is used even when it begins a sentence.

Figures: If labeled, parts of figures (callouts) should be 8-pt. lower case Roman letters within parentheses. Whenever possible, all caption parts shown on the figure must be removed and keyed along with the caption.

The general style for captions is such that each caption number should be cited with the abbreviation "Fig." and the number, followed by a period, an em space, and then the text of the caption. The first word of the caption should always be capitalized, regardless of any style that may be chosen to list caption parts (a), (b), etc., if included. In general, do not use A, An, or The at the beginning of a figure or table caption. Example:

Fig. 1. Theoretical measured values of *n*.

There are several acceptable styles for listing the parts of the figure in the caption. Be consistent within each paper, but otherwise use whichever style is most convenient for the figure. Regardless of which caption notation is used, the citation of (a), (b), etc., should always appear before the corresponding caption part. Examples:

Fig. 1. Intercomplex crosstalk characteristics. (a) Electrode transmission. (b) Interelectrode crosstalk.

Fig. 2. (a) Variation of effective mode index with time. (b) Step-index change.

Fig. 3. Output resistance as a function of channel doping for 1-m-long gate. (a) InGaAs and (b) InP JFETs with pinchoff voltage as a parameter.

Fig. 4. (a) and (b) Plain and side views, respectively, of the experimental setup used to measure the effective diffraction loss which can be achieved using the feedback technique.

Do not use:

Fig. 1. (a) Electrode transmission. (b) Interelectrode crosstalk.

If a figure after reduction will run more than one 21-pica column in width, the caption should be flush left on 43 picas.

If parts of a figure after reduction will run the length of more than one page, the full descriptive part of the caption should be cited with the first part of the figure followed by the corresponding caption for the part. On the subsequent pages, the word (*Continued*.) will be placed under the carryover parts of the figure followed by a repeat of the full descriptive part of the caption and the corresponding caption for the carryover parts.

Captions for Landscape/broadside figures: The text should appear below the figures and facing outward at all times. Example:

Fig. 6. True and estimated spectra for a real data sequence. (a) True spectrum.

Fig. 6. (*Continued.*.) True and estimated spectra for a real data sequence. (b) Estimated with the periodogram.

Tables: The general style for table captions is such that each caption number should be centered above the table with the label TABLE (set in 8-pt. caps) and the enumeration given in Roman numerals. The descriptive text of the caption should be centered directly below the table number caption and is set in 8-pt. and 6-pt. caps. The captions are usually centered on 21 picas, unless the table will be wider than one column width, in which case the table caption should be centered on 43 picas.

The descriptive text of the table caption does not contain a period at the end of the caption, although punctuation may be necessary within the caption itself. In general, table captions should be set as an inverted pyramid.

As in figures, labeled parts of tables should be 8-pt. lower case Roman letters within parentheses. The style for listing the parts of a table in the caption and in text depends on whichever style is most convenient for the table. The most acceptable style is to follow the conventions for callouts of figures. Example:

TABLE I

PARAMETER VALUES

TABLE II

Optimal Wavelength as a Function of Polarizer Angle. (a) Wavelength for External Cavity. (b) Estimated Wavelength for Laser Diode

A single rule should be added above and below the table body. Use the **hrule** macro to create rules. The type specs for the text of a table is 8-pt. TR for full length papers, brief papers, and short papers.

The same rules as in figures apply for listing table part labels (callouts).

Table footnotes should be 8-pt. type and should be placed below the bottom rule of the table.

Obtaining permission to reuse copyrighted material

- 1) Reusing IEEE graphics previously published in IEEE publications. Author should email IEEE Intellectual property department at: <u>copyrights@ieee.org</u>. In mose cases, the only requirements will be to give full credit to the original source and to obtain the author's approval (as a courtesy to the author). At the end of the caption, add the reference number of the papers from which the graphics are being used.
- 2) Reusing graphics previously published in non-IEEE publications. Author must have obtained permission to republish from copyright holder (in most cases, this is the publishing house (not the author of the paper). The wording is provided by the author (usually supplied by the publishing house itself). This text is added at the end of the caption.

Photos and Biographies

IEEE Transactions author biographies are generally divided into three paragraphs. However, if appropriate information for each paragraph is not provided by the author, the biography may be only one or two paragraphs.

The author's photograph is sized at 6 picas wide by 7.5 picas deep and is surrounded by the biography.

The biography begins with the author's full name and IEEE membership history as listed in the *IEEE Membership Directory*. The author's name appears in boldface type and must match the byline. A nickname may appear within parentheses, e.g., Sung-Mo (Steve) Kang, but not in the byline. The format for listing the IEEE membership history is to list each grade of membership attained followed by an apostrophe and the year it was attained, with each year and grade combination separated from the others by an en dash. Note that if an author attains the same membership grade in more than one year, list only the first year that it was reached. Check the current membership listed with the biography against the byline.

Abbreviations for IEEE membership grades are: S (Student Member), A (Associate Member), M (Member), SM (Senior Member), F (Fellow), LA (Life Associate Member), LM (Life Member), LSM (Life Senior Member), and

LF (Life Fellow). Note that A stands for Associate, not Affiliate, Member. Affiliate memberships are not listed in the byline or biography membership history.

Delete all references to IEEE membership from the text of the biography.

First Paragraph: If provided by the author, the first paragraph may contain a place and/or date of birth (list place, then date). Next, the author's educational background is listed. When listing degrees earned, the biography should state "[S]he received the Ph.D. degree from ..." (not "[S]he received [her] his Ph.D. degree from ..."). Always add the word degree after a degree title if it is not included. Include the years degrees were received. If the author was educated overseas, the names of the degrees earned may not be familiar. Abbreviations for some common international and domestic degrees are:

Dipl.Ing., Diplom-Physiker, Dr. Ing., Dr. Phil., Dr. Eng., B.S., S.B., B.Sc.(Hons.), B.E.E., B.S.E., M.Eng., M.Sc.(tech.), M.S.E.E., M.S.E., Civilingenir, Lic.es Sci., Lic.es Lett.

Add the locations of universities and colleges the first time they are mentioned if not included (*refer to the University website for location*). For U.S. state-named universities, repeat the state name in the location, and included the country (e.g., University of Colorado, Boulder, CO, USA); but for city-named universities, repeat the name of the city when giving the location (e.g., University of Chicago, Chicago, IL, USA). For universities outside the U.S., give locations with the name of the city (postal abbreviations of Canadian Provinces, if used) and the country the first time.

Use lower case for the author's major field of study.

Second Paragraph: The second paragraph of the biography should list military and work experience, including summer and fellowship jobs and consultant positions. Job titles are capitalized. The current job must have a location; previous positions may be listed without one (retain if given). Do not abbreviate city names, Company, Laboratory, or Department. Use standard names for all countries. If there is space, information the author provides about

previous publications may be included at the end of this paragraph. Edit out long lists of published books or articles. Instead use the sentence s(he) "is the author of several books and many published articles." The format for listing publishers of an author's books within the biography is: *Title of the Book* (publisher name, year) similar to a reference. List author affiliations with non-IEEE journals. The author often notes current and sometimes previous research interests. If space is available, these may be retained; otherwise, edit out the prior interests and leave in the current. Any homepage of the author may be listed in the biography only.

Do not repeat the author's name in the second paragraph; use "he" or "she."

Third Paragraph: The third paragraph begins with the author's title and last name (e.g., Dr. Smith, Prof. Jones, Mr. Kajor, Ms. Hunter). It lists the author's memberships in professional societies other than the IEEE and his or her status as a Professional Engineer if given. Finally, list awards and work for IEEE committees and publications, affiliation with other professional societies, and symposia.

Personal notes such as hobbies should be deleted from the biography. Examples:

Michael C. Author, Jr. (S'87–A'89–SM'90–F'93) was born in New York, NY, USA, on March 2, 1969. He received the B.S. degree in applied mathematics from the University of Michigan, Ann Arbor, MI, USA, in 1989, the M.S. degree in mathematical physics from Stanford University, Stanford, CA, in 1991, and the Ph.D. degree in electrical engineering from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 1995.

From 1993 to 1995, he was with the Raytheon Corporation, Bedford, MA, USA. From 1995 to 1996, he was with the General Electric Space Laboratory, Valley Forge, PA, USA. During 1996–1997, he was a Fulbright Lecturer at the University of Madrid, Madrid, Spain. He is currently an Associate Professor of Electrical Engineering at the University of Maryland, College Park, MD, USA. His research has been concerned with reentry plasma effects and microwave diagnostics of plasmas.

Dr. Author, Jr. is a Registered Professional Engineer in the State of Pennsylvania.

Katsunari Okamoto was born in Hiroshima Prefecture, Japan, on October 19, 1949. He received the B.S. degree from Rutgers University, New Brunswick, NJ, in 1979 and the M.S. degree from Monmouth University, Long Branch, NJ, USA, in 1984

He was a Postdoctoral Fellow at the University of Tokyo in 1978. He joined the Ibaraki Electrical Communication Laboratory, N.T.T., Ibaraki-ken, Japan, in 1979, where he was engaged in research on the optimum waveguide structure of optical fibers. At present, he is a Member of Technical Staff at Bellcore, Red Bank, NJ, USA.

Dr. Okamoto is a member of the Institute of Electronics and Communication Engineers of Japan.

NOTE: If no photograph is available or the journal does not require them, the biography is set $8/9 \times 21$ picas.

Squibs

If no biography or photograph is available, a squib is used. The phrase is run at $8/9 \times 21$ picas, flush left. Example:

James A. Author, (S'87–A'89–SM'90–F'93) photograph and biography not available at the time of publication.

D. Other Text to Edit

Footnotes

Footnotes should be numbered in consecutive order throughout the text. In full length, brief, and short papers, they are 8/9 TR $\times 21$. Each footnote should be a new paragraph. The footnote numbers are superscripts in text and in the actual footnotes. In text, place the superscript footnote numbers after punctuation such as periods, commas, and parentheses, quotation marks, but generally before dashes, colons, and semicolons in a compound sentence. The footnotes should be placed at the bottom of the text column in which they are cited.

Lists in Text

There are three types of lists in text: run-in lists, displayed lists, and where lists. The ordering of labeling for all lists is 1), 2), 3) followed by a), b), c), and then i), ii), iii). All are Roman; note single parenthesis. The order of indentation is 1 em, 2 ems, 3 ems.

Run-In Lists: Lists that run in with text must be grammatically correct. They must also be introduced by a colon, separated by semicolons, and have parallel construction. Example:

The carrier–phonon interaction matrices are given by: 1) polar optical phonons; 2) deformation potential optical phonons; and 3) piezoelectric acoustic phonons.

Displayed Lists: Lists that are displayed may be either incomplete sentence items or full sentence items. Incomplete sentence items contain a few items, are very short, are grammatically parallel, and are handled in two ways. If the items are not mentioned in the text or are less than three items, run in as shown in the example for runin lists. If, however, the items are mentioned later in text, introduce the item with a colon, number the items, begin

the entry with a lower case letter, and set block paragraph style. Use semicolons between items and a period at the end of the list. Example:

This operating scenario provides all of the contributors necessary to configure a resonant power distribution system:

- 1) the implementation of capacitor power factor correction on the power line;
- 2) the presence of nonlinear load;
- 3) the tuning of the power line by the load adjustments to a frequency present in the nonlinear generator.

Incomplete sentence items that are mentioned in text may also be formatted as shown in the example for full sentence items.

Full sentence items may be introduced by "that" or other words taking object and are rewritten to end with a period. If the items are introduced by a sentence ending with a colon, change the colon to a period. Number all items, start each entry with a capital letter, and end with a period. Example:

The synthesis is performed in three major steps.

- 1) Geometry is generated for the selected module variants.
- 2) Shape variants using different fold counts for resistors are generated for each module.
- 3) Routing and postprocessing complete the final layout.

Where Lists: Where lists define variables in the equations preceding the list. They are characterized by incomplete sentences and follow the same rules as *Nomenclature* lists, with the following exceptions.

- 1) There is no primary heading.
- 2) The left-hand side is indented one em space.
- 3) The first letter on the right-hand side is lower case.
- 4) Each item ends with a semicolon (except for the last item, which ends with a period).
- 5) The lists are at least three items long; if fewer than three items, the list is generally run in paragraph form. Follow author preference for run-in or displayed lists. Example:

where

 $\Delta \upsilon s = \Delta V_S \cos{(\omega' t + \phi')};$

- ΔV_S amplitude of supply voltage flicker;
- ω' angular frequency of supply voltage flicker;
- V_{Sf} supply voltage amplitude;
- ω supply angular frequency.

Note the alignment of the equal sign with the right-hand side.

Lists having mixed items (start with an incomplete item, then have a full sentence explanation) are treated as a full sentence item list.

Note Added in Proof

An author may wish to add a brief note in the proof stage, citing results obtained after acceptance of the paper or mentioning additional references that have come to the author's attention since acceptance. This added information is usually inserted at the end of the Conclusion section of the paper or in whatever section contains the last paragraph of the main body of the paper. As long as the note is not a major change to the paper or more than a few lines long, the addition generally does not require further review procedures. Use the tertiary heading "Note Added in Proof:" (run into text), but set in boldface italic with no enumeration and an em space indent. Example:

Note Added in Proof:

E. Other Types of Papers

Editorials

This category of papers includes the various types of introductory papers, such as Editorials, Guest Editorials, Forewords, Introductions, and Editorial Announcements that appear at the beginning of issues as non-technical introductory material. A discussion of the papers in an editorial should follow the order of the table of contents. The editorial may contain illustrations, citations, and references. Follow general rules for editing. An acknowledgment does not contain a heading. If a heading is required, set as a separate section and follow the primary heading specs without enumeration. *Note:* In the Editorial, the Acknowledgment does not need to be in third person.

20

Procedures and style for Editorials include the following.

General Specs: Type specs are the same as for full length papers. The initial cap remains the same. The title of the Editorial is set in 24 pt. as in a full length paper title. There is no Abstract. There is a rule above the DOI.

NOTE: Editorials generally do not carry a section heading above the title. Center the word "Editorial" in 24-pt. type above the title.

Byline: Note that the byline for the Editorial does NOT appear below the title as it does in a full length paper. The name of the author of the Editorial or Foreword (usually the Editor or Guest Editor) (called "signature") appears at the end of the Editorial, 6 pts. below the end of text, in 10-pt. and 8-pt. caps. Stack and align the name or names with an identifier such as "Guest Editor" which should appear in italics next to the name. The affiliation should appear as a "list" under each name. The right edge of the longest of these aligned lines should then be flush right at the end of the last column of text. Example:

M. K. SAIN, *Guest Editor* Department of Electrical Engineering University of Illinois Urbana, IL 60617 USA

Biographies and Photos: Biographies and photographs that appear with Editorials are set differently from regular biographies and photos in the Transactions. They are, for example, not 8/9 type, but are the same type size as the text of the Editorial (normally 10/12). In addition, Editorial biographies are: first 13 lines \times 32, rest at 43 picas. The photos are reduced to 9 1/2 \times 12 picas.

Copyright Line: Run a copyright line for the Editorial, even if no copyright form is submitted by the Editor.

Brief Papers

Brief papers are set up like full length papers, except that the paper title is set in 16-pt. TR, centered on 43 picas. These papers do contain Abstracts and also take the initial cap. The byline includes the membership grade. See Section I-B. They do not contain biographies and photographs of the authors. Footnotes, references, and figure/table captions are 8/9 TR. The papers carry issue running heads on both left and right pages.

Short Papers, Correspondence, and Communications

Short papers are set up like full-length papers, except that usually they are 9/11 type and their titles and bylines are smaller type and run across only one column. Usually, short paper titles are 10/12 bold with bylines 9-pt. upper and lower case. These papers do contain Abstracts, but do not take the initial cap. The membership grade is not included in the byline. Author biographies and photos are not included. Footnotes, captions, references are 8/9 type.

Comments and Replies

Comments are generally in response to a previously published paper. The Comments and Author(s) Reply are short papers published together in that the "Reply" is in response to the Comments. These short items may appear without Abstracts. A special format applies for Comments and Author(s) Reply. Begin the first sentence with "In the above paper [1], ..." Reference [1] is the commented paper's citation, will appear as Reference [1] in the References section. Include a copyright line for Comments and Replies even if no new forms are required from the author(s). Some publications refer to these articles as Discussions and Closures. Index Terms are optional.

Example of the Comments:

Title: Comments on "Harmonics: The Effects on Power Quality and Transformers"

Byline: Keith H. Sueker

Footnote: Manuscript received July 15, 1995. The author is with the School of Engineering, Vanderbilt University, Nashville, TN 37235 USA (e-mail: k.sueker@ieee.org).. Digital Object Identifier 10.1109/JQE.2006.12345

NOTE: The footnote here relates back to the original paper being commented upon. The title is not repeated.

Example of the Reply:

Title: Authors' Reply

Byline: Robert D. Henderson and Patrick J. Rose

Footnote:

Manuscript received October 3, 2009; accepted October 5, 2009. Date of publication November 2, 2009; date of current version November 25, 2009.

The authors are with RDH Consultants, Inc., Charlotte, NC 28241 USA. Digital Object Identifier 10.1109/JQE.2006.12348

Corrections/Errata

The format for a Corrections is basically the same as for the Comments, except that a Corrections does not carry a Reply. Run a copyright line with a Corrections even if no new forms are received from the author(s). Corrections that has been generated in-house may be labeled "Erratum," and should also follow the standard format, although the byline may be omitted because the IEEE Transactions/Journals Department assumes authorship of the Corrections. *Note:* The plural form of the word is used in the title, even if there may be only one correction. Example of a "Corrections" article:

Title: Corrections to "On the Exact Realization of LOG-Domain Elliptic Filters Using the Signal Flow Graph Approach"

Byline: Costas Psychalinos and Spiridon Vlassis

Footnote:

Manuscript received May 1, 2003.

The authors are with the Physics Department, Electronics Laboratory, Aristotle University

of Thessaloniki, GR-54124 Thessaloniki, Greece (e-mail: cpsychal@physics.auth.gr; svals@skiathos.physics.auth.gr). Digital Object Identifier 10.1109/TCSII.2003.814788

Example of Errata:

Title: Erratum

Byline: There is no byline for an erratum, as this is created if the department (staff/vendor) is responsible for the error.

Footnote:

Manuscript received January 20, 2004. Digital Object Identifier 10.1109/TVLSI.2004.830244

Book Reviews

Some publications carry Book Reviews. The type specs of the text are the same as for a short paper or correspondence; however, the title runs additional information about the book that is being reviewed. The title is separated from the book's author by an em dash. Included in parentheses is the city of publication, publisher, date of publication, the total number of pages of the book, and the price. Outside of the parentheses is the reviewer's name in italics. Some Transactions carry a short biography of the reviewer under the title. Book Reviews appear in the table of contents with a listing for both the author of the book and the reviewer. Example:

Title and Byline:

The Analysis and Design of Pneumatic Systems—B. L. Andersen. (New York: Wiley, 1987, 302 pp., \$65.00.) *Reviewed by J. L. Shearer.*

First Footnote:

The reviewer is with the College of Engineering, Idaho State University, Pocatello, ID 83209 USA. Digital Identifier 0090-6778/TNN.2005.828433.

Table of Contents:

The Analysis and Design of Pneumatic Systems—B. L. Andersen Reviewed by J. L. Shearer 123

Obituaries/In Memoriam

Obituaries are usually run as the first page of an issue, like an Editorial. They are set up with the same specs as Editorials. Obituaries normally are formatted as one column, at 36 picas width. They may carry a photo of the person being memorialized, usually the same size as in Editorials (9- $1/2 \times 12$ picas). The name appears above the photograph in 12-pts., boldface. The photograph is generally centered above the text. The years of birth and death are generally cited at the bottom of the photo in 12-pts., boldface type in parentheses. The obituary is normally set as one column, across a 36-pica width.

F. Editing Style for Transactions

The following provides a summary of the most important style distinctions to be made in the final copy editing of a Transactions paper.

Acronyms

Define acronyms the first time they appear in the Abstract as well as the first time they appear in the body of the paper, written out first as part of the sentence, followed by the acronym in parentheses. Widely used or familiar terms should be defined (see Section VIII-F of this manual for some terms that must be defined the first time they are used in text). Acronyms do not need to be defined in the text if mentioned in the Nomenclature. Coined plurals or plurals of acronyms do not take the apostrophe as per *Chicago Manual of Style*. Example: FET (singular); FETs (plural).

Indefinite articles are assigned to abbreviations to fit the sound of the first letter: an FCC regulation; a BRI.

Spelling

Obviously, in reading and editing a paper, misspellings and typographical errors are top priority for correction. Note that IEEE Transactions use the first spellings indicated in our first reference, the most current edition of *Webster's New Collegiate Dictionary*.

British Spellings and Terminology: Change all British spellings to American spellings. In particular, watch for "our" endings in words like "behaviour" (change to "behavior") and "re" endings in words like "centre" (change to "center"). Also watch for the use of "s" rather than "z" in words like "polarisation" (change to "polarization"). See "Common Hyphenations and Misspellings" in Section VIII-E.

Trademarks

The trademark symbol, TM and [®] are no longer used. Capitalize the first letter in the trademark name only. Follow the author's notation. The symbols TM and [®], which often accompany registered trademark names on product packaging and in advertisements, need not be used in running text.

Plurals

Plurals of units of measure take the "s." For example, the plural form of 3 mil is 3 mils; 3 bits/s instead of 3 bit/s. The plural of calendar years do not take the apostrophe before the "s." For example, the plural form of 1990 is 1990s.

Hyphenation Rules

For hyphenation and spelling guidelines, IEEE style follows: 1) the list of preferred spellings and hyphenated words; 2) the guidelines discussed in the Grammar and Usage in Transactions section of this guide; and 3) the first version of the spelling given in *Webster's Tenth New Collegiate Dictionary*. Do not hyphenate most compound modifiers if they occur after the noun being modified, even if hyphenating them before the noun. "Except for *cooperate* and *coordinate*, use a hyphen if the prefix ends in a vowel and the word that follows begins with the same vowel."

Example:

The plan was well prepared. The man was little known. The woman was better qualified. His boat was 42 feet long. He has a 42-feet-long boat. T was the data period of the 40-Gb/s data signal. The 160-GHz MLLD was a diode in which a 40-nm-long saturable absorber was located.

Follow the author's preference if the result is consistent and clear. The most important hyphenation guideline is to be certain that the hyphenation for a particular word or group of adjectives is consistent within a particular paper.

The En, Em, or Two-Em Dash

The en dash represents the words "to," "through," or "and." Use it between page numbers, reference numbers, figure citations, academic years, proper nouns, names, a range of values, or for opposites. Examples are: pp. 10–15, 1984–1990, Jones–Smith theorem, input–output, voltage–current curve, analog–digital converter, 10–20 cm. Also, use the en dash in chemical abbreviations such as Ni–Al–Si. When using the en dash to represent a range, if the word "from" occurs, the word "to" must be used rather than an en dash (ranges from 5 to 50 times).

The em dash is used in ordinary writing to mark a suspension of the sense. It is also used like parentheses, to mark a subordinate thought within a sentence.

Grammar

Check closely for lapses of clarity, subject/verb agreement, and parallel clause construction. See samples below and a more detailed discussion in the Grammar and Usage in Transactions section of this guide.

Number:

A number of samples were taken ... A number N expressing the relation x/y is chosen ... Data: The data were collected ... (always plural) Series: A series of tests was run ... (always singular with "a") Some, All, Half: Some (all, half) of it is ... Some of them are ...

Quantity:

Three volts was applied ... Four grams was added ...

Contractions

Contractions such as "don't" and "can't" are not used in technical text. Change to "do not" and "cannot." Note: "don't care," "best-case," and "worst-case" are allowed and used often in journals like TCAD.

Capitalization

In general, discourage capitalization in text except where absolutely necessary. For example, only proper names attached to the names of laws, principles, theorems, etc., get capitalized (Boyle's law, Newton's first law, etc.). Computer commands are in computer tags and remain small caps; most computer languages (Cobol, Java, LISP, PERL, etc.) are upper and lower case. In text, the names of IEEE publications are 10-pt. and 8-pt. caps: TRANSACTIONS, IEEE SPECTRUM, PROCEEDINGS OF THE IEEE.

Math

Some brief guidelines for editing math are explained here. For further discussion, see Section IV of this guide.

- 1) Variables are set italic; vectors are usually boldface italic (if distinguished by the author).
- 2) Remove commas around variables in text.
- 3) If not included by the author, always add a zero before decimals, but do not add after (e.g., 0.25).
- 4) Stet the use of the author's parentheses and brackets (i.e., [0,1) may be correct).
- 5) Spell out units used in text without quantities (e.g., "where the noise is given in decibels"). For units appearing with quantities, use the standard abbreviations listed in Section VIII-G.
- 6) Numbers and units used as compound adjectives may be hyphenated only if needed for clarity: 10-kV voltage, 5-in-thick glass. Do not insert a hyphen when they are not used as adjectives: a current of 2 A, a line 4 in long, a length of 3.05 mm.
- 7) Use thin spaces instead of commas between numbers in tens or hundreds of thousands (e.g., 62 000, 100 000, but 4000).
- 8) Always change μ to μ m, "micron" to "micrometer," "submicron" to submicrometer." Always change cycle per second to hertz (Hz); cycle per second may not appear as cycle, cps, c/s, csec. See "Table of Units and Quantity Symbols" in Section VIII-G.
- 9) In text, break down (shill) multiline (built-up) fractions so they can be placed on one line. Sometimes parentheses may need to be added to distinguish between expressions, especially when a minus appears [e.g., $\frac{a}{b-c}$ becomes a/(b-c)], $\frac{c-d}{k+4}$ becomes $\left[(c-d)/(k+4)\right]$.
- 10) In exponential expressions [e.g., $e^{-(jwt)xyzk}$], there are sometimes long and complicated superscripts. These may be brought down on line with the substitution of "exp" for "e" and the addition of square brackets (e.g., exp[-(jwt)xyzk]).
- 11) Distinguish between lower case italic "ell" or "oh" versus one and zero.
- 12) Always use numerals for numbers written with units. Otherwise, spell out numbers below 11, and use numerals for others unless they begin a sentence or are combined in a phrase (gives 7 to 13 times more).
- 13) Use zeroth, first, *n*th, (k + 1)th, not 1st, 2nd, (k + 1)st, etc.
- 14) Use the word "equation" at the start of a sentence, but in text, just use the number [e.g., in (1)].

- 15) Use the \$ symbol versus "dollars" in sums of money.
- 16) The slash (/) is acceptable in place of the word "per" when it lends to the clarity of the sentence. For example: "the ratio of 16 samples/s to 35 samples/s as compared to …"

Ellipses: In mathematics an author may use dots (ellipses) to show continuation in an expression (e.g., x_2 , ..., x_{16}). The type of mathematical expression will determine whether the ellipses points are set on the baseline or centered. If commas or operational signs are present, they are placed after each term and after the three ellipses points (almost all expressions will use three points). If operational signs are used, the ellipses are centered on the operator. When commas are used the ellipses are on the baseline. Example:

 $x_1, x_2, \dots, x_n \text{ not } x_1, x_2 \dots x_n$

 $x_1 + x_2 + \dots + x_n \text{ not } x_1 + x_2 + \dots + x_n$ $y = 0, 1, 2, \dots \text{ not } y = 0, 1, 2 \dots$

 $x_1x_2\cdots a_n \operatorname{not} x_1x_2\cdots a_n$

Conditions: In displayed equations, there should be a comma or parentheses and a two-em space between the main expression and the condition following it. Example:

$$x = yn^{-2} \qquad \forall n = 3$$

$$x = yn^{-2}, \qquad \text{if } n = 3 - y^{-4}.$$

$$x = yn^{-2}, \qquad y = 3, \dots, m$$

NOTE: There is no comma before a for all " \forall " symbol.

Compound Units: Compound units should be separated by a multidot (e.g., 4 V · s), but leave the slash if the author uses it since this has a different meaning (for instance, 6 V/s means volts per second). It is also possible to use a negative power to put a unit in the denominator: $cm/s^2 = cm \cdot s^{-2}$. Parentheses may be used to clarify a unit: $g/(cm \cdot s)$ or $g \cdot cm^{-1} \cdot s^{-1}$.

Use of Periods and Commas: Equations which conclude a sentence should end with a period. The only time punctuation is used to lead into an equation is when the lead-in text is a complete sentence. Example:

where we had the following:

$$x = Y + Z$$

or where, i.e.,

$$x = Y + Z$$
.

Commas appearing at the ends of equations are deleted unless they are critical to the punctuation of the sentence containing the equation.

Equation Numbers

Check that equation numbering is consecutive, that it appears flush right on line with the last line of an equation, that there are no repeats or missing numbers, and that a correct numbering style has been used.

Displayed Equations

Material in displayed equations is automatically italic unless otherwise indicated by the author. Some simple general rules apply. All variables are italic. Function names and abbreviations are Roman, as are units, unit abbreviations, complete words, and abbreviations of words. Superscripts and subscripts follow this same formula: when they are variables, they are italic; when they are abbreviations of words (such as "in" and "out" for input and output), they are Roman. Single-letter superscripts and subscripts may be italic even if they are abbreviations, unless this leads to inconsistency between italic and Roman characters for similar types of subscripts.

Typical Problems

Which does the author mean: zero or "oh"? one or "ell"? subscript variable or on line? A general guideline to help resolve these questions before querying the author is to read carefully through the paper—does the author mention "O" for output or use a series of numbers like 0, 1, 2,?—and look through the illustrations—does V_s appear in the figures or is it V_s ? This may provide clues.

G. General Layout Rules

- 1) Normal page depth for a Transactions is 60 picas (called even).
- 2) Pages may run one line long (61 picas) or short (59 picas), but facing pages (left and right) must be the same depth.
- 3) Transactions papers are set in a two-column format. Each column is 21 picas wide, with a 1-pica space between the two columns, giving a total page width of 43 picas.
- 4) Specifics of type area spacing are approximately 18 pts. between text and footnotes or figures and text, 6 pts. above and below equations and lists, 12 pts. above primary heads, at least 6 pts. above secondary heads, and 3 picas between biographies.
- 5) Figures and tables are placed at the tops of columns as close to their first mention as possible, but preferably after the mention.
- 6) Figures and tables progress vertically, not horizontally, on pages.
- 7) Footnotes must appear at the bottom of the column where they are first mentioned.
- 8) There must be at least two or three lines of text under a head at the bottom of a column.
- 9) Never leave widows at the tops of columns when breaking text. (A "widow" is any single last line of a paragraph, even if it is of full column width.) The exceptions are when widows are used to introduce equations or when they are in the Reference section.
- 10) Avoid breaking multiline equations so that one line appears at the bottom of a column and the others at the top of the next column.
- 11) The starting page number is determined by checking the previous issue—it is the next page number after the last page of the preceding issue, including any fillers. Issues beginning a new calendar year always start with page 1.
- 12) Obituaries/In Memoriam(s) are articles formatted on 36-pica width.

III. GRAMMAR AND USAGE IN TRANSACTIONS

A. Rules of Grammar

The principles of style given below aim to concentrate on fundamentals of modern usage. Particular emphasis is given to the rules most commonly violated.

- 1) Form the possessive singular of nouns by adding's (Avogadro's theorem).
- 2) In a series of three or more terms, use a comma immediately before the coordinating conjunction (usually and, or, or nor).
- 3) Enclose parenthetic expressions between commas (
- 4) Use the semicolon, not the comma, to separate two complete sentences which form a compound sentence.
- 5) Use a colon after an independent clause to introduce a list.
- 6) **Punctuation always goes inside quotation marks, except for the colon and semicolon.** Use single quotation marks around quotes within quotes. Quotes may be used around a new or special usage of a term the first time only, but use of quotes in this manner should be kept to a minimum.
- 7) Do not use double parentheses in text expressions, but keep them in math. For example, (see (10)) should become [see (10)].
- 8) All acronyms and numerical plurals do not use apostrophes, i.e., FETs, 1980s.
- 9) Compound nouns made from a one-syllable verb and a short adverb are one word when found that way in the dictionary (setup, takeoff, breakup). Compound nouns are likely to be two words, without a hyphen, or one word (bandwidth, bypass, flowchart, phase shift, sideband, standing wave). Compound nouns of more than two words can be hyphenated.
- 10) A pair of words, modifying a third word separately, does not get a hyphen (a tall water tower, a hot metal cylinder). If the first word modifies the second, and the pair together modify the third, there is a hyphen between the pair (a high-frequency signal, a second-order equation). The exception to this is the adverb ending in "ly," which needs no hyphen to join it to the next word.
- 11) A hyphen is not used after the comparative or the superlative (a higher order equation, a worst case value, nearest neighbor method). Do not hyphenate chemical compounds (sodium chloride crystals). Alloys and mixtures take the en dash (Ni–Co, He–Ne laser).
- 12) Do not use commas between adjectives (a planar equiangular spiral antenna).
- 13) Do not hyphenate predicate adjectives (... is well known, ... is second order).
- 14) **Compound verbs are generally hyphenated** (arc-weld, freeze-dry). Keep the hyphen when using the participles of such verbs as adjectives (freeze-dried, arc-welded). However, verbs with up, out, down, off, on, etc., do not have a hyphen, although the nouns formed from them may be hyphenated or one word (Verb: set up, break down, read out; Noun: setup, breakdown, readout).

B. Words Often Confused

Affect: to change or modify (verb). Effect: result (noun); cause (verb).

Alternate: a substitute. Alternative: a matter of choice.

Among: involves more than two things. Between: involves more than two things, but considers each individually.

Compare to: point out resemblances between different objects. Compare with: point out differences between same objects.

Compose: a set composed of members. Comprise: a set comprising members; members comprising a set.

Farther: distance. Further: quantity.

Fewer: modifies plural nouns specifying countable units, e.g., fewer tubes. Less: modifies singular mass nouns and singular abstract nouns, e.g., less air.

Imply: something suggested though not expressed. Infer: something deduced from evidence. Number: a large number of people. Amount: a large amount of water.

Principal: chief, main, most important (adjective). Principle: a rule (noun).

Precede: come before. Proceed: continue, advance.

That: (defining, restrictive). Which: (nondefining, nonrestrictive)

IV. EDITING MATHEMATICS

A. The Language of Math

When editing technical publications it is important to remember that the mathematics often carries as much if not more meaning than the body of text itself. Therefore, it is critical that the grammar of an equation be taken into account when editing.

Most equations should read like a sentence. They should contain a noun and a verb and often contain adjectives, prepositional phrases, conjunctions, and conditions. Equations also contain punctuation. When math occurs along with text it shares the grammatical characteristics of the text. A displayed expression may be a main or subordinate clause, an expression in apposition, a direct object, an item in a list, or the object of a preposition. Use comma at end of introductory sentences after: i.e., e.g., "Hence" or "That is." Use a colon after words such as "following" or "as follows." There should be no punctuation after forms of the verb to be, or between a verb and its object or a preposition and its object. IEEE style dictates that the only punctuation used at the end of an equation is a period. There is, however, other punctuation permitted in the equation itself and between an equation and its condition. This interior punctuation contains mathematical meaning and must not be changed.

Some examples of interior punctuation are as follows. *Mathematical Ellipses:*

 $I = 1, 2, 3, \ldots, n$

NOTE: *Only three dots* are used and they are enclosed by commas and are on the baseline. *Matrix:*

 $C_{\text{Eopt}} = \begin{bmatrix} -4.65 \, E^{+0} & -1.07 \, E^{-1} & -1.42 \, E^{-1} & -9.50 \, E^{-4} & 2.52 \, E^{+1} & 3.36 \, E^{+0} \\ 1.97 \, E^{+0} & 1.44 \, E^{-1} & 8.80 \, E^{+0} & 5.88 \, E^{-2} & 2.14 \, E^{+1} & 1.46 \, E^{+0} \\ -1.62 \, E^{+0} & -1.10 \, E^{-1} & 1.01 \, E^{+1} & 6.27 \, E^{-2} & -1.92 \, E^{+1} & -1.37 \, E^{+0} \end{bmatrix}$ (1)

NOTE: There is a centered operator, equation number, and period. *Parenthetic Statement:*

$$v(t) = u(t),$$
 $t = 1, 2, ..., m$

NOTE: There is a 2em space after the comma and before the condition t = 1, 2, ..., m. Multiple conditions should be separated with a semicolon, with a comma at the end of the equation, a 2em space, and the condition aligned on the operator.

B. In-Line Equations and Expressions

An inline equation is an equation within text or part of a paragraph. It is not displayed.

Rule 1: Equations appearing in text should be broken after a verb or an operator, meaning, if at all possible, the verb or operator should remain on the top line of text.

Rule 2: Fractions should not appear stacked in line. $(xy + 6\alpha)$ should be written as $(xy + 6\alpha)/(xy)$.

Rule 3: Collective signs should not appear with limits to top and bottom, but to the side instead.

 $\sum_{i=0}^{i=\infty}$ should be written as $\sum_{i=0}^{i=\infty}$.

Rule 4: Use Roman function exp instead of *e* followed by a lengthy superscript. $e^{(zx^2+y)(\alpha-2yx)+zx}$ should be written as exp[$(zx^2+y)(\alpha-2yx)+zx$].

Rule 5 (optional): Avoid square roots (radical signs) having long bars. $\sqrt{(x+\alpha)}$ should be rewritten as $(x+\alpha)^{\frac{1}{2}}$.

C. Break/Alignment Rules

Rule 1: Break equations at verbs and align on same when possible for a displayed equation.

$$A = (5\alpha + x) + (10y + \beta)$$

$$\geq (5x - \alpha + y + x^2)$$

$$\equiv B^2$$

Rule 2: In equations with one verb, break at operators and align to the right of verb.

$$A = (5\alpha + x) + (10y + \beta)^{2} - (5x - \alpha + y + x^{2})$$

Rule 3: Separate all equations with 1) an em quad if they fit on one line or 2) stack and align on verb.

$$x = (-b + 4ac) \quad y = (a - 2bc)$$
$$z = (-c + 3ab)$$

Rule 4: An equation that will fit conveniently on two lines without further breaks should be broken at the verb and aligned flush left/flush right over the column width.

$$=\frac{(-c+3ab)+(a-bc)^2-(b-2c)}{(4ac+3bc)-(2c+3ab)}$$

Rule 5: When breaking an equation within fences, break at an operator and align inside the left-hand fence.

$$x = \left[\left(\frac{-c + 3ab}{-bc} \right) - (b - 2\alpha) + \left(\frac{4ac + 3bc}{ac} \right) - (2c + 3ab) \right]$$

NOTE: Pairs of fences should match in size and be proportional to the math within.

Rule 6: A period is placed at the end of a fraction, case equation, or closed delimiters, shown as

$$2xy = \frac{(-c+3ab) + (a-bc)^2 - (b-2c)}{(4ac+3bc) - (2c+3ab)}$$

2xy

$$x = \left[\left(\frac{-c + 3ab}{-bc} \right) - (b - 2\alpha) + \left(\frac{4ac + 3bc}{ac} \right) - (2c + 3ab) \right]$$

NOTE: Pairs of fences should match in size and be proportional to the math within.

D. Exceptions and Oddities

Right to Left Equations: Equations in which the verb appears in the right half of the statement are broken before an operator and aligned to the left of the verb.

$$5\alpha + x + 10y + \beta^2 + z =$$

x

Solidus as Operator: Break after a solidus and align the next line to the right of the verb.

$$A = [(2z - 5\alpha + x) (xy + 6\alpha)]$$
$$[(xy + 6\alpha)]$$

Implied Product: When a set of fences is followed directly by another set of fences, the equation may be broken between them, provided a multiplication sign (\times, \cdot) is inserted. Alignment is to the right of the verb as for other operators.

$$x = (-b + 4ac) (a - 2bc)$$
$$\times (-c + 3ab)$$

Integrals and Differentials: If an equation containing an integral must be broken before the differential expression (see Section VIII-G: Glossary), break at an operator and align to the right of the integral. It is preferential not to break this type of equation until a differential occurs, then break after the differential expression.

Preferential

$$x = \int_{1}^{0} \frac{1}{2} + \left(\frac{n-1}{n}\right) - dy A_{0} + (2x - 3zy)$$

If necessary

$$x = \int_{1}^{0} \frac{1}{2} \left(\frac{n-1}{n} \right)$$
$$- dy A_{0} + (2x - 3zy)$$

E. Headings for Theorems, Proofs, and Postulates

Some papers do not conform to an outline style for theorems and proofs that is easily transformed into the normal heading sequence. The preferred style is to set the head giving the theorem number as a tertiary heading (no Arabic numeral preceding) and the proof head as a quaternary head. This rule also applies to Lemmas, Hypotheses, Propositions, Definitions, Conditions, etc.

In-text references to text sections are written: "in Section II" or "in Section II-A" or "in Section II-A1." Capitalize the word "Section." Do not use the word "Subsection"; use "Section" and write out the complete citation.

F. Text Equations

Consecutive Numbering: Equations within a paper are numbered consecutively from the beginning of the paper to the end. There are some Transactions in which an author's own numbering system such as numbering by section, e.g., (1.1), (1.2.1), (A1), is permitted.

Appendix Equations: Continued consecutive numbering of equations is best in the Appendix, but if an author starts equation numbering over with (A1), (A2), etc., for Appendix equations, it is permissible to leave the copy as is.

Hyphens and Periods: Hyphens and periods are usually removed from equation numbers, i.e., (1a) rather than (1-a) and (2a) rather than (2.a). This should be done consistently throughout the paper.

G. Reminders

Angle Brackets: Angle brackets are not the same as greater than and less than signs.

Vectors: Vectors are usually made boldface italic (if distinguished by the author).

Thin Spaces and Roman Functions and Differentials: Thin spaces occur on either side of both functions and differentials.

Incorrect

$$\sin t_t = \log \mu r$$

$$\sin t_t = \log \mu r$$

Incorrect

$$x = \int_0^x dx A_0 + \partial z \beta$$

Correct

$$x = \int_0^x dx A_0 + \partial z \beta$$

However, a thin space is not necessary when functions and differentials are preceded or followed by verbs or an operator.

Italics	Roman	Small Caps	
RC	p-n	A.M., P.M.	
RL	p-i-n	NOR	
I-V	$p^{+}-n-p^{++}$	OR	
LC	and variations thereof	ORing	
S/N	(don't forget the hyphen)	ORed	
f/22	SNR	AND	
et al.	O ring	NAND	
in situ	T junction	ADD	
inter alia	Y-connected circuit	DIFFER	
in toto	class-A amplifier	EXTRACT	
in vivo	2N5090 transistor	XOR	
in vitro	,e.g.,	EXCLUSIVE OR	
a priori	,i.e.,	DIMENSION	
a posteriori	viz.,	GO TO	
	Fortran IV	DO	
	Algol 60	READ	
	Cobol	WRITE	
	Atlas Autocode	PRINT	
	PL/1	CONTINUE	
	BAL	PAUSE	
	cf.,	FORMAT	
	Tr	END	
	Ke	ON	
	Im	OFF	
		MOSFET	
		IGFET	
		IMPATT	
		TRAPATT	
		ONE	
		ZERO	
		BARITT	

H. Short Reference List of Italics, Roman, and Small Capitals

I. Functions and Operators Always Set in Roman Font

ad	(adjoint)
arg	(argument)
cos	(cosine)
cosh	(hyperbolic cosine)
cot	(cotangent; do not use ctg)
coth	(hyperbolic cotangent)
csc	(cosecant; do not use cosec)
csch	(hyperbolic cosecant)
curl	(curl)
det	(determinant)
diag	(diagonal)
dim	(dimension)
div	(divergence)
exp	(exponential)
hom	(homology)
Im	(Imaginary)
inf	(inferior)
ker	(kernel)
lim	(limit)

liminf	(limit inferior)	
limsup	(limit superior)	
ln	(natural logarithm)	
log	(logarithm)	
lub	(least upper bound)	
max	(maximum)	
min	(minimum)	
mod	(modulus)	
Pr	(Probability)	
Re	(real)	
sec	(secant)	
sin	(sin)	
sinh	(hyberbolic sine)	
tan	(tangent)	
tanh	(hyperbolic tangent)	
tr	(trace)	
Tr	(transpose)	
wr	(wreath)	

K. The Greek Alphabet

Name	Upper Case	Lower Case
Alpha	А	α
Beta	В	β
Gamma	Γ	γ
Delta	Δ	δ
Epsilon	Е	З
Zeta	Z	ζ
Eta	Н	η
Theta	Θ	$\dot{\theta}$
Iota	Ι	l
Kappa	Κ	K
Lambda	Λ	λ
Mu	М	μ
Nu	Ν	v
Xi	Ξ	ξ
Omicron	0	0
Pi	П	π
Rho	Р	ρ
Sigma	Σ	σ
Tau	Т	τ
Upsilon	Y	υ
Phi	Φ	φ
Chi	Х	X
Psi	Ψ	$\tilde{\psi}$
Omega	Ω	ω

V. EDITING REFERENCES

A. Citing References

References in Text: References need not be cited in the text. When they are, they appear on the line, in square brackets, *inside the punctuation*. Grammatically, they may be treated as if they were footnote numbers, e.g.,

as shown by Brown [4], [5]; as mentioned earlier [2], [4]–[7], [9]; Smith [4] and Brown and Jones [5]; Wood et al. [7]

NOTE: Use *et al.* when **six** or more names are given.

or as nouns:

as demonstrated in [3]; according to [4] and [6]–[9].

References Within a Reference: Check the reference list for *ibid.* or *op. cit.* These refer to a previous reference and should be eliminated from the reference section. In text, repeat the earlier reference number and renumber the reference section accordingly. If the *ibid.* gives a new page number, or other information, use the following forms:

[3, Th. 1]; [3, Lemma 2]; [3, pp. 5-10]; [3, eq. (2)]; [3, Fig. 1]; [3, Appendix I]; [3, Sec. 4.5]; [3, Ch. 2, pp. 5-10]; [3, Algorithm 5].

NOTE: Editing of references may entail careful renumbering of references, as well as the citations in text.

B. Style

Reference numbers are set flush left and form a column of their own, hanging out beyond the body of the reference. The reference numbers are on the line, enclosed in square brackets. In all references, the given name of the author or editor is abbreviated to the initial only and precedes the last name. Use commas around Jr., Sr., and III in names. IEEE publications must list names of all authors, up to six names. If there are more than six names listed, use *et al.* after the first author. For non-IEEE publications, *et al.* may be used if names are not provided. Abbreviate Conference titles (see Section V-E and V-F). Note that when citing IEEE Transactions, if the issue number or month is not available, research IEEEXplore to update the information. Retain or request the day of the month when referencing a patent. References may not include all information; please obtain and include relevant information. Do not combine references. There must be only one reference with each number. If there is a URL included with the print reference, it is included at the end of the reference (see style for on-line references).

Periodicals

Prior to 1988, the volume number of IEEE Transactions/Journals carried the acronym of the journal. For example, an issue of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL would read: *IEEE Trans. Automat. Contr.*, vol. AC-26, no. 1, pp. 1–34, Jan. 1981. When referencing IEEE Transactions, both the issue number and month are included upon verification of frequency and starting month.

NOTE: The only exception to this rule is PROCEEDINGS OF THE IEEE, which never carried an acronym on the masthead.

Basic Format:

[1] J. K. Author, "Name of paper," Abbrev. Title of Periodical, vol. x, no. x, pp. xxx-xxx, Abbrev. Month, year.

Examples:

- [1] M. Ito *et al.*, "Application of amorphous oxide TFT to electrophoretic display," *J. Non-Cryst. Solids, vol.* 354, no. 19, pp. 2777–2782, Feb. 2008.
- [2] R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, "Fabrication of organic light emitting diode pixels by laser-assisted forward transfer," *Appl. Phys. Lett.*, vol. 91, no. 6, Aug. 2007, Art.ID. 061103.
- [3] J. Zhang and N. Tansu, "Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates," *IEEE Photon. J.*, vol. 5, no. 2, Apr. 2013, Art. ID 2600111.
- [4] J. U. Buncombe, "Infrared navigation—Part I: Theory," *IEEE Trans. Aerosp. Electron. Syst.*, vol. AES-4, no. 3, pp. 352–377, Sep. 1944.

- [5] S. Azodolmolky *et al.*, Experimental demonstration of an impairment aware network planning and operation tool for transparent/translucent optical networks," *J. Lightw. Technol.*, vol. 29, no. 4, pp. 439–448, Sep. 2011.
- [6] H. Eriksson and P. E. Danielsson, "Two problems on Boolean memories," *IEEE Trans. Electron. Devices*, vol. ED-11, no. 1, pp. 32–33, Jan. 1959.
- [7] F. Aronowitz, "Theory of traveling-wave optical maser," *Phys. Rev.*, vol. 134, pp. A635–A646, Dec. 8, 1965.
- [8] Ye. V. Lavrova, "Geographic distribution of ionospheric disturbances in the F2 layer," *Tr. IZMIRAN*, vol. 19, no. 29, pp. 31–43, 1961 (Transl.: E. R. Hope, Directorate of Scientific Information Services, Defence Research Board of Canada, Rep. T384R, Apr. 1963).
- [9] E. P. Wigner, "On a modification of the Rayleigh–Schrodinger perturbation theory," (in German), *Math. Naturwiss. Anz. Ungar. Akad. Wiss.*, vol. 53, p. 475, 1935.
- [10] E. H. Miller, "A note on reflector arrays," *IEEE Trans. Antennas Propag.*, to be published.*** *Always use this style when the paper has been accepted or scheduled for a future publication, i.e., do not use "to appear in."****
- [11] C. K. Kim, "Effect of gamma rays on plasma," submitted for publication. *** Always use this style when the paper has not yet been accepted or scheduled for publication, i.e., do not use "to appear in."***
- [12] W. Rafferty, "Ground antennas in NASA's deep space telecommunications," *Proc. IEEE*, vol. 82, no. 5, pp. 636-640, May 1994.
- [13] L. T. Wu *et al.*, "Real-time analytic sensitivity method for transient security assessment and prevent control," *Proc. Inst. Elect. Eng.*, vol. 135, pt. C, pp. 107-117, Mar. 1988.
 ***Authors may refer to this journal as Proc. IEE, but the abbreviation must be as listed above. Proc. IEE is printed in the U.K. and must not be confused with the Proc. IEEE. ***
- [14] Special Issue on Artificial Neural Network Applications, Proc. IEEE, vol. 84, pp. 1353-1576, Oct. 1996.

Article Referred to in the Same Issue:

[1] R. U. Aslip, "Surface and leaky wave antennas," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.*, vol. 30, no.1, pp. 545–546, Jan. 2000.

NOTE: Handle it exactly as any other reference with no difference.

Books

Basic Format:

[1] J. K. Author, "Title of chapter in the book," in *Title of His Published Book, xth ed. City of Publisher, (only U.S. State), Country: Abbrev. of Publisher, year, ch. x, sec. x, pp. xxx–xxx.*

Examples:

- [1] B. Klaus and P. Horn, Robot Vision. Cambridge, MA, USA: MIT Press, 1986.
- [2] L. Stein, "Random patterns," in *Computers and You*, J. S. Brake, Ed. New York, NY, USA: Wiley, 1994, pp. 55-70.
- [3] R. L. Myer, "Parametric oscillators and nonlinear materials," in *Nonlinear Optics*, vol. 4, P. G. Harper and B. S. Wherret, Eds. San Francisco, CA, USA: Academic, 1977, pp. 47-160.
- [4] M. Abramowitz and I. A. Stegun, Eds., *Handbook of Mathematical Functions* (Applied Mathematics Series 55). Washington, DC, USA: NBS, 1964, pp. 32-33.
- [5] E. F. Moore, "Gedanken-experiments on sequential machines," in *Automata Studies* (Ann. of Math. Studies, no. 1), C. E. Shannon and J. McCarthy, Eds. Princeton, NJ, USA: Princeton Univ. Press, 1965, pp. 129-153.
- [6] Westinghouse Electric Corporation (Staff of Technology and Science, Aerospace Div.), *Integrated Electronic Systems*. Englewood Cliffs, NJ, USA: Prentice-Hall, 1970.
- [7] M. Gorkii, "Optimal design," Dokl. Akad. Nauk SSSR, vol. 12, pp. 111-122, 1961 (Transl.: in L. Pontryagin, Ed., The Mathematical Theory of Optimal Processes. New York, NY, USA: Interscience, 1962, ch. 2, sec. 3, pp. 127-135).
- [8] A. Histace, "Image restoration—Recent advances and applications," in Super-Resolution Restoration and Image Reconstruction for Passive Millimeter Wave Imaging. Rijeka, Croatia: InTech, 2012, pp. 25–45.

Reports

The general form for citing technical reports is to place the name and location of the company or institution after the author and title and to give the report number and date at the end of the reference.

Basic Format:

[1] J. K. Author, "Title of report," Abbrev. Name of Co., City of Co., Abbrev. State, Country, Rep. xxx, year.

Examples:

- E. E. Reber, R. L. Michell, and C. J. Carter, "Oxygen absorption in the earth's atmosphere," Aerospace Corp., Los Angeles, CA, USA, Tech. Rep. TR-0200 (4230-46)-3, Nov. 1988.
- [2] J. H. Davis and J. R. Cogdell, "Calibration program for the 16-foot antenna," Elect. Eng. Res. Lab., Univ. Texas, Austin, Tech. Memo. NGL-006-69-3, Nov. 15, 1987.
- [3] R. E. Haskell and C. T. Case, "Transient signal propagation in lossless isotropic plasmas," USAF Cambridge Res. Labs., Cambridge, MA, Rep. ARCRL-66-234 (II), 1994, vol. 2.
- [4] M. A. Brusberg and E. N. Clark, "Installation, operation, and data evaluation of an oblique-incidence ionosphere sounder system," in "Radio Propagation Characteristics of the Washington–Honolulu Path," Stanford Res. Inst., Stanford, CA, USA, Contract NOBSR-87615, Final Rep., Feb. 1995, vol. 1.
- [5] P. Diament, S. L. Richert, and W. L. Lupatkin, "V-line surface-wave radiation and scanning," Dep. Elect. Eng., Columbia Univ., New York, Sci. Rep. 85, Aug. 1991.

Handbooks

Basic Format:

[1] Name of Manual/Handbook, x ed., Abbrev. Name of Co., City of Co., Abbrev. State, year, pp. xxx-xxx.

Examples:

- [1] Transmission Systems for Communications, 3rd ed., Western Electric Co., Winston-Salem, NC, 1985, pp. 44-60.
- [2] Motorola Semiconductor Data Manual, Motorola Semiconductor Products Inc., Phoenix, AZ, 1989.
- [3] *RCA Receiving Tube Manual*, Radio Corp. of America, Electronic Components and Devices, Harrison, NJ, Tech. Ser. RC-23, 1992.

Published Conference Proceedings

The general form for citing conference proceedings is to list the author and title of the paper, followed by the name (and location, if given) of the conference *in italics* using standard abbreviations.

Annals	Ann.
Annual	Annu.
Colloquium	Colloq.
Conference	Conf.
Congress	Congr.
Convention	Conv.
Digest	Dig.
Exposition	Expo.
International	Int.
Meeting	Meeting
National	Nat.
Proceedings	Proc.
Record	Rec.
Symposium	Symp.
Technical Digest	Tech. Dig.
Technical Paper	Tech. Paper
Workshop	Workshop
1	L L
Einst	1.4
FIrst	ISt
Second	2nd
Third	3rd
Fourth/nth	$4^{\text{th}}/\text{nth}$

Write out all the remaining words, but omit most articles and prepositions like "of the" and "on." That is, *Proceedings of the 1996 Robotics and Automation Conference* becomes *Proc. 1996 Robotics and Automation Conf.*

NOTE: All published conference or proceedings papers have page numbers.

Basic Format:

[1] J. K. Author, "Title of paper," in Abbreviated Name of Conf., (location of conference is optional), year, pp. xxx-xxx.

Examples:

- [1] G. R. Faulhaber, "Design of service systems with priority reservation," in *Conf. Rec. 1995 IEEE Int. Conf. Commun.*, pp. 3–8. *** *If the year is given in the conference title, it may be omitted from the end of the reference as shown here.****
- [2] S. P. Bingulac, "On the compatibility of adaptive controllers," in *Proc. 4th Annu. Allerton Conf. Circuit and Systems Theory*, New York, 1994, pp. 8–16.
- [3] W. D. Doyle, "Magnetization reversal in films with biaxial anisotropy," in *1987 Proc. INTERMAG Conf.*, pp. 2.2-1–2.2-6.
- [4] C. T. Meadow and D. W. Waugh, "Computer assisted interrogation," in 1991 Fall Joint Computer Conf., Proc. AFIPS Conf., vol. 29. Washington, DC: Spartan, 1991, pp. 381–394. *** There is an <emspace> between "vol. 29." and "Washington."***
- [5] P. C. Parks, "Lyapunov redesign of model reference adaptive control systems," in 1993 Joint Automatic Control Conf., Preprints, pp. 485–491.
- [6] T. S. Hsia, "System identification," in IEDM Tech. Dig., 1993, vol. 2, no. 8, pp. 6–13.

Papers Presented at Conferences

Basic Format:

[1] J. K. Author, "Title of paper," presented at the abbrev. Name of Conf., City of Conf., Abbrev. State, year.

Examples:

- J. G. Kreifeldt, "An analysis of surface-detected EMG as an amplitude-modulated noise," presented at the 1989 Int. Conf. Medicine and Biological Engineering, Chicago, IL, USA, Nov. 9–12, 1989.
- [2] G. W. Juette and L. E. Zeffanella, "Radio noise currents on short sections on bundle conductors," presented at the IEEE Summer Power Meeting, Dallas, TX, Jun. 22-27, 1990, Paper 90 SM 690-0 PWRS. *** PES Papers—For years prior to 1997, all Power papers were presented at a conference. ***
- [3] J. Arrillaga and B. Giessner, "Limitation of short-circuit levels by means of HVDC links," presented at the IEEE Summer Power Meeting, Los Angeles, CA, Jul. 12–17, 1990, Paper 70 CP 637. ***Preprints are available before the conference from the IEEE Customer Services Department, at the conference from Paper Sales, and after the conference from ASK*IEEE. ***

Patents

Basic Format:

[1] J. K. Author, "Title of patent," U.S. Patent x xxx xxx, Abbrev. Month, day, year.

Example:

- [1] J. P. Wilkinson, "Nonlinear resonant circuit devices," U.S. Patent 3 624 125, July 16, 1990.
- [2] T. Mei and T. Yang, "Circuit and method for average –current regulation of light-emitting diodes," U.S. Patent 7 898 187 B1, 2011, Mar. 1, 2012.
- [3] S. P. Voinigescu *et al.*, Direct *m*-ary quadrature amplitude modulation (QAM) operating in saturated power mode," U.S. Patent Appl. 20110013726A1, Jan. 20, 2011.

NOTE: Use "issued date" if several dates are given.

Theses (B.S., M.S.) and Dissertations (Ph.D.)

Basic Format:

- [1] J. K. Author, "Title of thesis," M.S. thesis, Abbrev. Dept., Abbrev. Univ., City of Univ., Abbrev. State, year.
- [2] J. K. Author, "Title of dissertation," Ph.D. dissertation, Abbrev. Dept., Abbrev. Univ., City of Univ., Abbrev. State, year.

Examples:

- [1] J. O. Williams, "Narrow-band analyzer," Ph.D. dissertation, Dept. Elect. Eng., Harvard Univ., Cambridge, MA, 1993.
- [2] N. Kawasaki, "Parametric study of thermal and chemical nonequilibrium nozzle flow," M.S. thesis, Dept. Electron. Eng., Osaka Univ., Osaka, Japan, 1993.
- [3] N. M. Amer, "The effects of homogeneous magnetic fields on developments of tribolium confusum," Ph.D. dissertation, Radiation Lab., Univ. California, Berkeley, Tech. Rep. 16854, 1995. *** The state abbreviation is omitted if the name of the university includes the state name, i.e., "Univ. California, Berkeley." ***
- [4] C. Becle, These de doctoral d'etat, Univ. Grenoble, Grenoble, France, 1968.

Unpublished

These are the two most common types of unpublished references.

Basic Format :

- [1] J. K. Author, private communication, Abbrev. Month, year.
- [2] J. K. Author, "Title of paper," unpublished.

Examples:

- [1] A. Harrison, private communication, May 1995.
- [2] B. Smith, "An approach to graphs of linear forms," unpublished.
- [3] A. Brahms, "Representation error for real numbers in binary computer arithmetic," IEEE Computer Group Repository, Paper R-67-85.

Standards

Basic Format:

[1] Title of Standard, Standard number, date.

Examples:

- [1] IEEE Criteria for Class IE Electric Systems, IEEE Standard 308, 1969.
- [2] Letter Symbols for Quantities, ANSI Standard Y10.5-1968.

C. On-Line Sources

The guidelines for citing electronic information as offered here are in modified illustration of the adaptation by the International Standards Organization (ISO) documentation system and the American Psychological Association style.

Guidelines for Breaking URLs:

- Break after slash or double slash.
- Break "before" the hyphen that is part of an address, but do not break after; do not add hyphens or spaces; do not let addresses hyphenate.
- Break "before" a tilde (~), a hyphen, an underline (_), a question mark, or a percent (%) symbol.
- Break before or after an equals sign or an ampersand (follow the same rule for the "at" (@) symbol).

Books, Monographs

Online Basic Format:

[1] [1] J. K. Author, "Title of chapter in the book," in *Title of Published Book*, xth ed. City of Publisher, State, Country: Abbrev. of Publisher, year, ch. x, sec. x, pp. xxx–xxx. [Online]. Available: http://www.web.com

Example:

 G. O. Young, "Synthetic structure of industrial plastics," in Plastics, vol. 3, Polymers of Hexadromicon, J. Peters, Ed., 2nd ed. New York, NY, USA: McGraw-Hill, 1964, pp. 15-64. [Online]. Available: http://www.bookref.com.
- [2] *The Founders' Constitution*, Philip B. Kurland and Ralph Lerner, eds., Chicago, IL, USA: Univ. Chicago Press, 1987. [Online]. Available: http://press-pubs.uchicago.edu/founders/
- [3] The Terahertz Wave eBook. ZOmega Terahertz Corp., 2014. [Online]. Available: http://dl.z-thz.com/eBook/zomega_ebook_pdf_1206_sr.pdf. Accessed on: May 19, 2014.
- [4] Philip B. Kurland and Ralph Lerner, eds., *The Founders' Constitution*. Chicago, IL, USA: Univ. of Chicago Press, 1987, http://press-pubs.uchicago.edu/founders/. Accessed on: Feb. 28, 2010.

[5]

Periodicals

Basic Format:

[1] J. K. Author, "Name of paper," *Abbrev. Title of Periodical*, vol. x, no. x, pp. xxx-xxx, Abbrev. Month, year. [Online]. Available: site/path/file. Accessed on: Month, Day, Year.

Examples:

- [1] J. S. Turner, "New directions in communications," *IEEE J. Sel. Areas Commun.*, vol. 13, no. 1, pp. 11-23, Jan. 1995.
- [2] W. P. Risk, G. S. Kino, and H. J. Shaw, "Fiber-optic frequency shifter using a surface acoustic wave incident at an oblique angle," *Opt. Lett.*, vol. 11, no. 2, pp. 115–117, Feb. 1986. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-11-2-115

[3]

Papers Presented at Conferences

Basic Format:

- [1] J. K. Author. Title. presented at abbrev. Conference title. [Type of Medium]. Available: site/path/file *Example:*
- [1] Process Software Corp., MA. Intranets: Internet technologies deployed behind the firewall for corporate productivity. presented at INET'96 Annu. Meeting [Online]. Available: http://www.process.com/Intranets/wp2.htp

Reports and Handbooks

The general form for citing technical reports is to place the name and location of the company or institution after the author and title and to give the report number and date (retain month if given) at the end of the reference. Retain volume and issue number before date if given. The report title appears in quotation marks. For reports cited online, please ensure a year is included and add the URL to the end of the reference.

Basic Online Format:

[1] J. K. Author, "Title of report," Abbrev. Name of Co., City of Co., Abbrev. State, Country, Rep. no., vol./issue, year. [Online]. Available: site/path/file

Basic Format:

- [1] J. K. Author. (year, month). Title. Company. City, State, Country. [Type of Medium]. Available: site/path/file
 - Examples:
- [1] R. J. Hijmans and J. van Etten, "Raster: Geographic analysis and modeling with raster data," R Package Version 2.0-12, Jan. 12, 2012. [Online]. Available: <u>http://CRAN.R-project.org/package=raster</u>
- [2] Teralyzer. Lytera UG, Kirchhain, Germany [Online]. Available:
- http://www.lytera.de/Terahertz_THz_Spectroscopy.php?id=home, Accessed on: Jun. 5, 2014.[3] Linear Technology, Standalone linear Li-ion battery charger and dual synchronous buck converter," Rep. no.

LTC3552, Datasheet., 2012. Accessed on Sep. 12, 2014.

- [4] Bureau of Meteorology, "Bureau of Meteorology: Measuring Rainfall in Australia," 2009. [Online]. Available: <u>http://www.bom.gov.au/climate/cdo/about/</u> definitionsrain.shtml#meanrainfall.
- [5] GeoBasisNRW, Cologne, Germany, "ATKIS—Digitale Topographische Karte 1:25.000 (DTK25)," Bezirksregierung Koln, 2012. [Online]. Available: http:// www.bezregkoeln.nrw.de/brkinternet/presse/publikationen/geobasis /faltblatt geobasis atkis01.pdf
- [6] K. Kagaku. Multipurpose chest phantom: Lungman. [Online]. Available: http://www.kyotokagaku.com/products/detail03/pdf/ph-1_catalog.pdf. Accessed Apr. 17, 2014.
- [7] Apple Inc., Palo Alto, CA, USA, "Apple iPhone," Available: http://apple.com/iphone/. Accessed: Feb. 26, 2013.

U.S. Government Documents

Basic Format:

[1] Legislative body. Number of Congress, Session. (year, month day). *Number of bill or resolution, Title*. [Type of medium]. Available: site/path/file

Example:

[1] U.S. House. 102nd Congress, 1st Session. (1991, Jan. 11). H. Con. Res. 1, Sense of the Congress on Approval of Military Action. [Online]. Available: LEXIS Library: GENFED File: BILLS

Patents

Basic Format:

[1] Name of the invention, by inventor's name. (year, month day). *Patent Number* [Type of medium]. Available: site/path/file

Example:

[1] Musical toothbrush with adjustable neck and mirror, by L.M.R. Brooks. (1992, May 19). *Patent D 326 189* [Online]. Available: NEXIS Library: LEXPAT File: DESIGN

Manuals/Software

- L. Breimann. (2003). Manual on Setting Up, Using, and Understanding Random Forests v4.0. [Online]. Available: http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf, Accessed on: Apr. 16, 2014.
- [2] M. Kuhn. *The Caret Package*. (2012) [Online]. Available: http://cranr-project.org/web/packages /caret /caret.pdf
- [3] Antcom, Torrance, CA, USA. *Antenna Products*. (2011) [Online]. Available: http://www.antcom.com /documents/catalogs/L1L2GPSAntennas.pdf, Accessed on: Feb. 12, 2014.

D. Common Abbreviations of Words in References

Acoustics	Acoust.
Administration	Admin.
Administrative	Administ.
American	Amer.
Analysis	Anal.
Annals	Ann.
Annual	Annu.
Apparatus	App.
Applications	Appl.
Applied	Appl.
Association	Assoc.
Automatic	Automat.
British	Brit.
Broadcasting	Broadcast.
Business	Bus.
Canadian	Can.
Chinese	Chin.
Communications	Commun.
Computer(s)	Comput.
Conference	Conf.
Congress	Congr.
Convention	Conv.
Correspondence	Corresp.
Cybernetics	Cybern.
Department	Dept.
Development	Develop.

Digest	Dig.
Economic(s)	Econ.
Education	Edu.
Electrical	Elect.
Electronic	Electron.
Engineering	Eng.
Ergonomics	Ergonom.
European	Eur.
Evolutionary	Evol.
Foundation	Found.
Geoscience	Geosci.
Graphics	Graph.
Industrial	Ind.
Information	Inform.
Institute	Inst.
Intelligence	Intell.
International	Int.
Japan	Jpn.
Journal	J.
Letter(s)	Lett.
Machine	Mach.
Magazine	Mag.
Management	Manage.
Managing	Manag.
Mathematical	Math.
Mechanical	Mech.
Meeting	Meeting
National	Nat.
Newsletter	Newslett.
Nuclear	Nucl.
Occupation	Occupat.
Operational	Oper.
Optical	Opt.
Optics	Opt.
Organization	Org.
Philosophical	Philosoph.
Proceedings	Proc.
Processing	Process.
Production	Prod.
Productivity	Productiv.
Ouarterly	Ouart.
Record	Rec.
Reliability	Rel.
Report	Rep.
Research	Res.
Review	Rev.
Roval	Rov.
Science	Sci.
Selected	Select.
Society	Soc.
Sociological	Sociol.
Statistics	Statist.
Studies	Stud.
Supplement	Suppl
Symposium	Symp.
Systems	Syst.
Technical	Tech
Techniques	Techn
Technology	Technol.

TelecommunicationsTelecommun.TransactionsTrans.VehicularVeh.WorkingWork.

42

E. IEEE Abbreviations for Transactions, Journals, Letters

NOTE: * denotes past acronyms/abbreviations of journals (used for pre-1988 publications).

Publication	Acronym	Reference Abbreviation
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS	AES	IEEE Trans. Aerosp. Electron. Syst.
	ANE*	IEEE Trans. Aeronaut. Navig. Electron.*
	ANE*	IEEE Trans. Aerosp. Navig. Electron.*
	AS*	IEEE Trans. Aerosp.*
	MIL*	IEEE Trans. Mil. Electron.*
	AE*	IEEE Trans. Airborne Electron.*
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION	AP	IEEE Trans. Antennas Propag.
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS	LAWP	IEEE Antennas Wireless Propag. Lett.
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY	ASC	IEEE Trans. Appl. Supercond.
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING	ASLP	IEEE/ACM Trans. Audio, Speech, Language Process.
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING		IEEE Trans. Audio, Speech, Language
	ASL	Process.(2006–2013)
	SAP*	IEEE Speech Audio Process. (1993–2005)
IEEE TRANSACTIONS ON AUTOMATIC CONTROL	AC	IEEE Trans. Autom. Control
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING	ASE	IEEE Trans. Autom. Sci. Eng. (from July 2004)
IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT	AMD	IEEE Trans. Auton. Mental Develop.
IEEE TRANSACTIONS ON BIG DATA	BD	IEEE Trans. Big Data
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS	BHI	IEEE J. Biomed. Health Inform.
	ITB	IEEE Trans. Inf. Technol. Biomed. (1995– 2012)
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS	BCAS	IEEE Trans. Biomed. Circuits Syst.
IEEE REVIEWS IN BIOMEDICAL ENGINEERING	RBME	IEEE Rev. Biomed. Eng.
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING	BME	IEEE Trans. Biomed. Eng.
	BME*	IEEE Trans. Bio-Med. Eng.*
	BME*	IEEE Trans. Bio-Med. Electron.*
	PGME*	IEEE Trans. Med. Electron.*
IEEE TRANSACTIONS ON BROADCASTING	BC	IEEE Trans. Broadcast
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS	20	
	CSI	IEEE Trans. Circuits Syst. I, Reg. Papers
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL	CSII	IEEE Trans. Circuits Syst. II, Exp. Briefs
THEORY AND APPLICATIONS	CAS1*	IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. (1993–2003)
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND		
DIGITAL SIGNAL PROCESSING	CAS2*	IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.(1993–2003)
	CAS*	IEEE Trans. Circuits Syst.* (1974–1992)
	CT*	IEEE Trans. Circuit Theory* (until 1973)
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR		
VIDEO TECHNOLOGY	CSVT	IEEE Trans. Circuits Syst. Video Technol.
IEEE TRANSACTIONS ON CLOUD COMPUTING	CC	IEEE Trans. Cloud Comput.
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND		
NETWORKING	CCN	IEEE Trans. Cogn. Commun. Netw.
IEEE TRANSACTIONS ON COMMUNICATIONS	COM	IEEE Trans. Commun.
	COM*	IEEE Trans. Commun. Technol.* (until 1971)
IEEE COMMUNICATIONS LETTERS	COMML	IEEE Commun. Lett.
IEEE COMMUNICATIONS SURVEYS & TUTORIALS	COMST	IEEE Commun. Surveys Tuts.
IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND		
MANUFACTURING TECHNOLOGY	CPMT	IEEE Trans. Compon. Packag. Manuf. Technol.
	CAPT	IEEE Trans. Compon. Packag. Technol.(1999– 2010)

Publication	Acronym	Reference Abbreviation
	CPMTA	IEEE Trans. Compon., Packag.,Manuf. Technol. A (1994–1998)
	CHMT*	IEEE Trans. Compon., Hybrids, Manuf. Technol * (1978–1993)
	MFT*	IEEE Trans. Manuf. Technol.* (1972–1977)
	PHP*	IEEE Trans. Parts, Hybrids, Packag.* (June 1971–1977)
	PMP*	IEEE Trans. Parts, Mater., Packag.* (1965–1971)
	ADVP	IEEE Trans. Adv. Packag. (1999–2010)
	CPMTB	IEEE Trans. Compon., Packag., Manuf. Technol. B (1994–1998)
	EPM	IEEE Trans. Electron. Packag. Manuf. (1999–2010)
	CPMTC	IEEE Trans. Compon., Packag., Manuf. Technol. C (1996–1998)
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND	CBB	
BIOINFORMATICS IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN		IEEE/ACM Trans. Comput. Biol. Bioinf.
GAMES	CIAIG	IEEE Trans. Comput. Intell. AI in Games
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS	CSS	IEEE Trans. Comput. Social Syst.
IEEE TRANSACTIONS ON COMPUTERS	С	IEEE Trans. Comput.
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED	CAD	IEEE Trans. ComputAided Design Integr.
IFFF COMPLITER ARCHITECTURAL LETTERS	CAL	IFFF Comput Archit Lett
IEEE COM OTEXT MEMORY ON CONSUMER FLECTRONICS	CE	IFFF Trans Consum Electron
	BTR	IEEE Trans. Broadcast. Telev. Receiv. (1963–1974)
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY	CST	IEEE Trans. Control Syst. Technol.
	CYB	IEEE Trans. Cybern
IEEE TRANSACTIONS ON CYBERNETICS	SMCB*	IEEE Trans. Syst. Man, Cybern. B, Cybern. (1995–2012)
IEEE TRANSACTIONS ON DEVICE AND MATERIALS		
Reliability	DMR	IEEE Trans. Device Mater. Rel.
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL		
INSULATION	DEI	IEEE Trans. Dielectr. Electr. Insul.
	EI*	IEEE Trans. Electr. Insul.* (through 1993)
IEEE/OSA JOURNAL OF DISPLAY TECHNOLOGY	DT	J. Display Technol.
IEEE TRANSACTIONS ON EDUCATION	Е	IEEE Trans. Educ.
IEEE TRANSACTIONS ON ELECTROMAGNETIC		
COMPATIBILITY	EMC	IEEE Trans. Electromagn. Compat.
	RFI*	IEEE Trans. Radio Frea. Interference*
IEEE TRANSACTIONS ON ELECTRON DEVICES	ED	IEEE Trans. Electron Devices
IEEE JOURNAL OF ELECTRON DEVICES SOCIETY	EDS	IEEE J. Electron Devices Soc.
IEEE ELECTRON DEVICE LETTERS	EDL	IEEE Electron Device Lett.
IEEE TRANSACTIONS ON ELECTRONICS PACKAGING	EPM	IEEE Trans. Electron. Packag.
IFFE EMPEDDED SVETEME I ETTERE	FS	IFFF Embedded Syst Latt
IEEE EMBEDDED STSTEMS LETTERS IEEE TRANSACTIONS ON EMERGING TODICS IN COMPUTING	ES	IEEE Embeaueu Syst. Lett. IEEE Trans Emora Topics Comput
IEEE TRANSACTIONS ON EMERGING AND SELECTED TOPICS IN COMPUTING	ETCAS	TEEE Trans. Emerg. Topics Comput.
AND SYSTEMS	EICAS	IEEE J. Emerg. Sel. Topics Circuits Syst.
ILLE JOURNAL ON EMERGING AND SELECTED TOPICS IN POWER	ESTPE	
ELECTRONICS	FC	IEEE J. Emerg. Sel. Topics Power Electron.
IEEE TRANSACTIONS ON ENERGY CONVERSION	EU	IEEE I rans. Energy Convers.
IEEE TRANSACTIONS ON ENGINEERING WANAGEMENT		IEEE Irans. Eng. Manag.
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION		IEEE Irans. Evol. Comput.
IEEE IRANSACTIONS ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS	ACDC	<i>IEEE Irans. Explor. Solid-State Comput.</i> Devices Circuits
IEEE TRANSACTIONS ON FUZZY SYSTEMS	FUZZ	IEEE Trans. Fuzzy Syst.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE	CD C	
SENSING	GRS	IEEE Trans. Geosci. Remote Sens.

Publication

Publication	Acronym	Reference Abbreviation
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS	GRSL	IEEE Geosci. Remote Sens. Lett.
IEEE TRANSACTIONS ON HUMAN–MACHINE SYSTEMS	HMS*	IEEE Trans. Human–Mach. Syst.
	SMCC*	IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.
	SMC*	(1995–2012) IEEE Trans. Syst., Man, Cybern.* (1971–1995)
	SSC*	IEEE Trans. Syst. Sci. Cybern.* (through 1970)
IEEE TRANSACTIONS ON IMAGE PROCESSING	IP	IEEE Trans. Image Process.
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS	IE	IEEE Trans. Ind. Electron.
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS	II	IEEE Trans. Ind. Informat.
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS	IA	IEEE Trans. Ind. Appl.
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY	IFS	IEEE Trans. Inf. Forensics Security
IEEE TRANSACTIONS ON INFORMATION THEORY	IT	IEEE Trans. Inf. Theory
IEEE TRANSACTIONS ON INSTRUMENTATION AND		
MEASUREMENT	IM L DCL+	IEEE Trans. Instrum. Meas.
	I, PGI*	IEEE Trans. Instrum.*
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS IEEE INTERNET OF THINGS JOURNAL	IIS IoT	IEEE Irans. Intell. Iransp. Syst. IEEE Internet Things J.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA		
Engineering	KDE	IEEE Trans. Knowl. Data Eng.
IEEE LIFE SCIENCES LETTERS	LS	IEEE Life Sci. Lett.
IEEE/OSA JOURNAL OF LIGHTWAVE TECHNOLOGY	LT	J. Lightw. Technol.
IEEE TRANSACTIONS ON MAGNETICS	MAG	IEEE Trans. Magn.
IEEE MAGNETICS LETTERS	MAGL	IEEE Magn. Lett.
IEEE/ASME TRANSACTIONS ON MECHATRONICS	MECH	IEEE/ASME Trans. Mechatronics
IEEE TRANSACTIONS ON MEDICAL IMAGING	MI	IEEE Trans. Med. Imag.
IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS	MEMS	J. Microelectromech. Syst.
IEEE/ASME JOURNAL OF MICROELECTROMECHANICAL SYSTEMS	MEMS	J. Microelectromech. Syst.(1992–2013)
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS	MWCL	IEEE Microw. Compon. Lett.
	MGWL	IEEE Microw. Guided Wave Lett. (1991–2000)
IEEE TRANSACTIONS ON MICROWAVE THEORY AND		
TECHNIQUES	MTT	IEEE Trans. Microw. Theory Techn.
IEEE TRANSACTIONS ON MOBILE COMPUTING	MC	IEEE Trans. Mobile Comput.
IEEE TRANSACTIONS ON MIDLECULAR, BIOLOGICAL AND MULTI-		TEEE Trans. Mol. Biol. Muin-Scale
IEEE TRANSACTIONS ON MULTIMEDIA	ММ	IFFF Trans Multimedia
IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS	IVIIVI	IFFF Trans Multi-Scale Comput Syst
IEEE TRANSACTIONS ON NANOBIOSCIENCE	NB	IEEE Trans. Nanobiosci.
IEEE TRANSACTIONS ON NANOTECHNOLOGY	NANO	IEEE Trans. Nanotechnol.
IEEE NANOTECHNOLOGY EXPRESS	ENANO	IEEE Nanotechnol. Express
IEEE/ACM TRANSACTIONS ON NETWORKING	NET	IEEE/ACM Trans. Netw.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING	NNLS	
Systems		IEEE Trans. Neural Netw. Learn. Syst.
	NN	IEEE Trans. Neural Netw. (1990–2011)
IEEE TRANSACTIONS ON NUCLEAR SCIENCE	NS	IEEE Trans. Nucl. Sci.
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND		
REHABILITATION ENGINEERING	NSRE	IEEE Trans. Neural Syst. Rehabil. Eng.
	RE*	IEEE Trans. Rehabil. Eng.* (1993–2000)
IEEE JOURNAL OF OCEANIC ENGINEERING	OE	IEEE J. Ocean. Eng.
IEEE JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING	OCN	IEEE J. Opt. Commun. Netw.
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED Systems	PDS	IEEE Trans. Parallel Distrib. Syst.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND		
MACHINE INTELLIGENCE	PAMI	IEEE Trans. Pattern Anal. Mach. Intell.
IEEE PHOTONICS TECHNOLOGY LETTERS	PTL	IEEE Photon. Technol. Lett.
IEEE PHOTONICS JOURNAL	PJ	IEEE Photon. J.
IEEE JOURNAL OF PHOTOVOLTAICS	РНОТ	IEEE J. Photovolt.

Reference Abbreviation

Acronym

Publication

IEEE TRANSACTIONS ON PLASMA SCIENCE	PS	IEEE Trans. Plasma Sci.
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS	PAS*	IEEE Trans. Power App. Syst.*
IFFF TRANSACTIONS ON POWER DELIVERY	PWRD	(Infougn 1965) IFFF Trans Power Del
IFEE TRANSACTIONS ON POWER DELIVER I	PFI	IFFE Trans. Power Electron
IEEE TRANSACTIONS ON TOWER ELECTRONICS	I PEL	IFFF Power Electron Lett (2003-2005:
		abolished)
IEEE TRANSACTIONS ON POWER SYSTEMS	PWRS	IEEE Trans. Power Syst.
IEEE JOURNAL OF PRODUCT SAFETY ENGINEERING	PSE	IEEE J. Product Safety Eng.
IEEE Power and Energy Technology Systems Journal	PETS	IEEE Power Energy Technol. Syst. J.
IEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATION	PC	IEEE Trans. Prof. Commun.
IEEE JOURNAL OF QUANTUM ELECTRONICS	QE	IEEE J. Quantum Electron.
IEEE RFIC JOURNAL	RFIC	IEEE RFIC J.
IEEE RFID JOURNAL	RFID	IEEE RFID J.
IEEE TRANSACTIONS ON RELIABILITY	R	IEEE Trans. Rel.
IEEE TRANSACTIONS ON ROBOTICS	RO	IEEE Trans. Robot.
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION	RA*	IEEE Trans. Robot. Autom. (1989–Jun. 2004)
	RA*	IEEE J. Robot. Autom.* (1985–1988)
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH	STARS	IEEE J. Sel. Topics Appl. Earth Observ.
OBSERVATIONS AND REMOTE SENSING	a . a	Remote Sens.
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS	SAC	IEEE J. Sel. Areas Commun.
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM	GTOL	
ELECTRONICS	SIQE	IEEE J. Sel. Topics Quantum Electron.
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL	CTCD	IFFE I Gil Taning Cim al Durana
PROCESSING	515P	IEEE J. Sel. Topics Signal Process.
IEEE IRANSACTIONS ON SEMICONDUCTOR	см	IFEE Trans Somisond Manuf
MANUFACTURING	SIVI	IEEE I rans. Semicona. Manuj.
IEEE DENSORS JOURNAL	SEN	IEEE Sensors J. IEEE Trans. Signal Process
IEEE TRANSACTIONS ON SIGNAL PROCESSING	ASSP*	IEEE Trans. Signal Process. IEEE Trans. Acoust., Speech, Signal Process * (1975–1990)
	AU*	IEEE Trans. Audio Electroacoust. (until 1974)
IEEE SIGNAL PROCESSING LETTERS	SPL	IEEE Signal Process. Lett.
IEEE TRANSACTIONS ON SMART GRID	SG	IEEE Trans. Smart Grid
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY	STE	IEEE Trans. Sustain. Energy
IEEE Systems Journal	SJ	IEEE Syst. J.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING	SE	IEEE Trans. Softw. Eng.
IEEE JOURNAL OF SOLID-STATE CIRCUITS	SSC	IEEE J. Solid-State Circuits
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: Systems	SMC	IEEE Trans. Syst., Man, Cybern.,Syst.
	SMCA*	IEEE Trans. Syst., Man, Cybern. A, Syst.,Humans (1995-2012)
	MMS*	IEEE Trans. Man-Mach. Syst.* (through 1970)
	HFE*	Hum. Factors Electron.* (through 1968)
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND	TEHM	
MEDICINE		IEEE J. Transl. Eng. Health Med.
IEEE TRANSLATION JOURNAL ON MAGNETICS IN JAPAN	TJMJ	IEEE Transl. J. Magn. Jpn.(through 2010)
DESIGN	TCAD	IFFF I Technol Computer Aided Des
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY	ICAD	ieles J. rechnol. Computer Alueu Des.
	THz	IEEE Trans. THz Sci. Technol.
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION	_	IEEE Trans. Transport. Electrific.

46

Publication	Acronym	Reference Abbreviation
IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS,		
AND FREQUENCY CONTROL	UFFC	IEEE Trans. Ultrason., Ferroelectr., Freq. Control
	SU*	IEEE Trans. Sonics Ultrason.* (through 1985)
	UE*	IEEE Trans. Ultrason. Eng.*
	PGUE*	IEEE Trans. Ultrason. Eng.*
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY	VT	IEEE Trans. Veh. Technol.
	VC*	IEEE Trans. Veh. Commun.*
IEEE TRANSACTIONS ON VERY LARGE SCALE		
INTEGRATION (VLSI) SYSTEMS	VLSI	IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
IEEE TRANSACTIONS ON VISUALIZATION AND		
COMPUTER GRAPHICS	VCG	IEEE Trans. Vis. Comput. Graphics
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS	WC	IEEE Trans. Wireless Commun.
PROCEEDINGS OF THE IEEE		Proc. IEEE
		Proc. IRE* (through 1962)

List of IEEE Magazines

Magazines

IEEE Aerospace and Electronics Systems Magazine IEEE Annals of the History of Computing IEEE Antennas and Propagation Magazine IEEE ASSP Magazine (1984–1990) IEEE Circuits and Systems Magazine IEEE Circuits and Devices Magazine (1988-2006) IEEE Communications Society Magazine (through 1978) IEEE Communications Magazine (1979-present) **IEEE** Computational Intelligence Magazine IEEE Computing in Science and Engineering Magazine **IEEE** Computer Magazine **IEEE** Computer Applications in Power IEEE Computer Graphics and Applications Magazine **IEEE Concurrency** IEEE Consumer Electronics Magazine IEEE Control Systems Magazine IEEE Design & Test

IEEE Electrical Insulation Magazine IEEE Electomagnetic Compatibility Magazine IEEE Electrification Magazine IEEE ElectroTechnology Review

IEEE Engineering Management Review IEEE Expert (through 1997) IEEE Geoscience and Remote Sensing Magazine IEEE Industrial Electronics Magazine **IEEE Industry Applications Magazine** IEEE Instrumentation and Measurement Magazine IEEE Intelligent Systems (formerly IEEE Expert) IEEE Intelligent Transportation Systems Magazine IEEE Internet Computing Magazine **IEEE IT Professional IEEE Micro Magazine IEEE Microwave Magazine** IEEE MultiMedia Magazine IEEE Nanotechnology Magazine IEEE Network **IEEE Personal Communications IEEE Potentials** IEEE Power Electronics Magazine IEEE Power and Energy Magazine IEEE Power Engineering Review IEEE Pulse IEEE Robotics and Automation Magazine IEEE Signal Processing Magazine (1991-present) IEEE Solid-State Circuits Magazine IEEE Security and Privacy **IEEE Software IEEE Spectrum** IEEE Systems, Man, and Cybernetics Magazine IEEE Technology and Society Magazine IEEE Vehicular Technology Magazine China Communications Magazine Internet Computing

Reference Abbreviation IEEE Aerosp. Electron. Syst. Mag. IEEE Ann. Hist. Comput. IEEE Antennas Propag. Mag. IEEE ASSP Mag. IEEE Circuits Syst. Mag. IEEE Circuits Devices Mag. IEEE Commun. Soc. Mag. IEEE Commun. Mag. IEEE Comput. Intell. Mag. IEEE Comput. Sci. Eng. **IEEE** Computer IEEE Comput. Appl. Power IEEE Comput. Graph. Appl. Mag. IEEE Concurrency IEEE Consum. Electron. Mag. IEEE Control Syst. Mag. IEEE Des. Test. IEEE Des. Test. Comput.* (through 2012) IEEE Elect. Insul. Mag. IEEE Electrmagn. Compat. IEEE Electrific. Mag. IEEE ElectroTechnol. Rev. IEEE Eng. Med. Biol. Mag. (1982-2009) IEEE Eng. Manag. Rev. **IEEE Expert** IEEE Geosci. Remote Sens. Mag.(replaces Newsletter) IEEE Ind. Electron. Mag. IEEE Ind. Appl. Mag. IEEE Instrum. Meas. Mag. IEEE Intell. Syst. IEEE Intell. Transp. Syst. Mag. IEEE Internet Comput. IEEE IT Prof. IEEE Micro IEEE Microw. Mag. IEEE Multimedia Mag. IEEE Nanotechnol. Mag. IEEE Netw. IEEE Pers. Commun. IEEE Potentials IEEE Power Electron. Mag. IEEE Power Energy Mag. IEEE Power Eng. Rev. IEEE Pulse IEEE Robot. Autom. Mag. IEEE Signal Process. Mag. IEEE Solid State Circuits Mag. IEEE Security Privacy IEEE Softw. IEEE Spectr. IEEE Syst., Man, Cybern. Mag. IEEE Technol. Soc. Mag. IEEE Veh. Technol. Mag. China Commun. Internet Comput.

G. Some Common Acronyms and Abbreviations

NOTE: Asterisks (*) indicate terms which must be defined the first time they are used in text. Other terms listed here may be used without definition. A complete list can be found in Section VIII-I.

ac A–D, A/D AF AFC AGC	alternating current analog-to-digital audio frequency* automatic frequency control* automatic gain control*
AM	amplitude modulation
APD	avalanche photodiode
AR	antireflection*
AKMA	autoregressive moving average*
ASIC	application-specified integrated circuit
ATM	asynchronous transfer mode
av	average (subscript)*
avg	average (function)
AWGN	additive white Gaussian noise*
В-Е	base-emitter source
BER	bit error rate*
BPSK	binary phase-shift keying
BWO	backward-wave oscillator*
c.c.	complex conjugate (in equations)
CCD	charge-coupled device*
CDMA	code division multiple access*
CD-ROM	compact disk read-only memory
CIM	computer integrated manufacturing*
CIR	carrier-to-interference ratio*
CMOS	complimentary metal-oxide-semiconductor
CPFSK	continuous phase frequency-shift keying*
CPM	continuous phase modulation*
CPU	central processing unit
CRT	cathode-ray tube
СТ	current transformer*
CV	capacitance–voltage
CW	continuous wave*
dc	direct current
DC	directional coupler
DF	direction finder*; deuterium fluoride; degree of freedom*
DFT	discrete Fourier transform*
DMA	direct memory access*
DPCM	differential pulse code modulation*
DPSK	differential phase-shift keying*
EDP	electronic data processing
EHF	extremely high frequency*
ELF	extremely low frequency*
EMC	electromagnetic compatibility*
EMF	electromotive force*
EMI	electromagnetic interference*
ems	expected value of mean square*
FDM	frequency division multiplexing*

FDMA	frequency division multiple access*
FET	field-effect transistor
FFT	fast Fourier transform*
FIR	finite-impulse response*
FM	frequency modulation
	fuerous and the local and
FSK	frequency-shift keying*
FTP	file transfer protocol
FWHM	full-width at half-maximum*
GUI	graphical user interface
HRT	heterojunction hinolar transistor
LIEMT	high alastron mobility transistor
	high-electron mobility transistor
HF	high frequency
HTML	hypertext markup language
HV	high voltage
HVdc	high voltage direct current
IC	impedance compensation*: integrated circuit
	inside diameter induced draft*, integrated circuit
	mside diameter, mouced dian', mierorghar
IDP	integrated data processing*
IF	intermediate frequency
IGFET	insulated-gate field-effect transistor
i.i.d.	independent identically distributed*
IM	intermediate modulation
	import ionization qualenshe trengit time (diede)
	impact ionization avalanche transit time (diode)
I/O, I–O	input-output
IR	infrared
IR	current-resistance
161	internet of interference
191	intersympol interference
151 I_V	current_voltage
ISI I–V	current-voltage
ISI I-V	intersymbol interference current–voltage
JFET	junction field-effect transistor
JFET JPEG	junction field-effect transistor Joint Photographers Expert Group
JFET JPEG	junction field-effect transistor Joint Photographers Expert Group
JFET JPEG LAN	junction field-effect transistor Joint Photographers Expert Group local area network
JFET JPEG LAN LC	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance
JFET JPEG LAN LC LED	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance light-emitting diode
JFET JPEG LAN LC LED LHS	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance light-emitting diode left-hand side*
JFET JPEG LAN LC LED LHS L-1	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance light-emitting diode left-hand side*
JFET JPEG LAN LC LED LHS L-I	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance light-emitting diode left-hand side* light output–current
JFET JPEG LAN LC LED LHS L-I LMS	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance light-emitting diode left-hand side* light output–current least mean square
JFET JPEG LAN LC LED LHS L-I LMS LO	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance light-emitting diode left-hand side* light output–current least mean square local oscillator*
JFET JPEG LAN LC LED LHS L-I LMS LO LP	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance light-emitting diode left-hand side* light output–current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance–resistance
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR	junction field-effect transistor Joint Photographers Expert Group local area network inductance–capacitance light-emitting diode left-hand side* light output–current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance–resistance
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESEET	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET ME	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MESV	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency-shift keying
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency-shift keying magnetohydrodynamics
ISI I-V JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood estimator*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE MLSE	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood estimator* maximum-likelihood sequence estimator*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE MLSE MMF	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood estimator* maximum-likelihood sequence estimator* maximum-likelihood sequence estimator*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE MMF MMF	intersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency* minimum frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood estimator* maximum-likelihood sequence estimator* magnetomotive force monoliking micromuve integented sizewit*
JFET JPEG LAN <i>LC</i> LED LHS <i>L-I</i> LMS LO LP LPE <i>LR</i> MESFET MF MFSK MHD MIS MLE MMF MMIC	mersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency* minimum frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood estimator* maximum-likelihood sequence estimator* magnetomotive force monolithic microwave integrated circuit*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE MLSE MMF MMIC MoM	mersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency* minimum frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood estimator* maximum-likelihood sequence estimator* magnetomotive force monolithic microwave integrated circuit* method of moments*
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE MLSE MMF MMIC MOS	mersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood estimator* maximum-likelihood sequence estimator* magnetomotive force monolithic microwave integrated circuit* method of moments* metal-oxide-semiconductor
ISI I-V JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE MMF MMF MMIC MOS MOSFET	mersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency*shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood estimator* maximum-likelihood sequence estimator* magnetomotive force monolithic microwave integrated circuit* method of moments* metal-oxide-semiconductor metal-oxide-semiconductor metal-oxide-semiconductor
ISI I-V JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE MMF MMF MMIC MOS MOSFET MOST	mersymbol merference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood sequence estimator* magnetomotive force monolithic microwave integrated circuit* method of moments* metal-oxide-semiconductor field-effect transistor metal-oxide-semiconductor field-effect transistor
JFET JPEG LAN LC LED LHS L-I LMS LO LP LPE LR MESFET MF MFSK MHD MIS MLE MMF MMF MMIC MOS MOSFET MOST MPEG	mtersymbol interference current-voltage junction field-effect transistor Joint Photographers Expert Group local area network inductance-capacitance light-emitting diode left-hand side* light output-current least mean square local oscillator* linear programming* liquid phase epitaxy* inductance-resistance metal-semiconductor field-effect transistor medium frequency* minimum frequency-shift keying magnetohydrodynamics metal-insulator-semiconductor maximum-likelihood sequence estimator* maximum-likelihood sequence estimator* maximum-likelihood sequence containator* maximum-likelihood sequence estimator* maximum-likelihood sequence estimator* magnetomotive force monolithic microwave integrated circuit* method of moments* metal-oxide-semiconductor metal-oxide-semiconductor field-effect transistor metal-oxide-semiconductor transistor Motion Pictures Expert Group

NA		numerical aperture*
NIR		near infrared response*
NMF	R	nuclear magnetic resonance*
n-p-r	1	(diode)
NRZ		nonreturn to zero*
OD		outside diameter
OEI	ר	optoelectronic integrated circuit*
OOP		object-oriented programming
001		object oriented programming
PAM	[pulse-amplitude modulation*
PC		personal computer
PCM	L	pulse-code modulation*
pdf		probability density function*
PDN	l	pulse-duration modulation*
PF		power factor*
PID		Proportional-integral differential
p-i-n	, p-n-p	(diode)
PLL		phase-locked loop*
PM		phase modulation*
PML	,	perfectly matched layer
pp, p	p	peak-to-peak*
PPM		pulse-position modulation*
PRF		pulse-repetition frequency*
PRR		pulse-repetition rate*
PSK		phase-shift keying*
PTM	[pulse-time modulation
p.u.		per unit*
PWN	1	pulse width modulation*
Q		quality factor; figure of merit
QoS		quality of service
QPS:	K	quaternary phase-shift keying
RAM	1	random access memory
RC		resistance-capacitance
R&D)	research and development
RF		radio frequency
RFI		radio frequency interference*
RHS		right-hand side*
RIN		relative intensity noise*
RL		resistance-inductance
rms		root mean square
ROM	1	read-only memory
RV	-	random variable
SAW	7	surface acoustic wave*
SGM	IL	standard generalized markup language
SHF		super high frequency*
SI		International System of Units; severity index*
SIR		signal-to-interference ratio
S/N.	SNR	signal-to-noise ratio
SOC		system-on-a-chip*
SSB		single sideband*
SW		short wave*
SWR	ł	standing-wave ratio*
TDM	1	time-division modulation*; time-division multiplexing*
TDM	ÍA	time-division multiple access*
		1

TE	transverse electric
TEM	transverse electromagnetic
TFT	thin-film transistor*
TM	transverse magnetic
TVI	television interference*
TWA	traveling-wave amplifier*
UHF	ultrahigh frequency
UV	Ultraviolet
VCO	voltage-controlled oscillator*
VHF	very high frequency*
V–I	voltage-current
VLF	very low frequency*
VLSI	very large scale integration*
WAN	wide area network
WDM	wavelength division multiplexing*

52

NOTE: * denotes past acronyms/abbreviations of journals (used for pre-1988 publications).

List of IEEE Transactions, Journals, and Letters

Publication	Acronym	Reference Abbreviation
IFFE TRANSACTIONS ON AFROSPACE AND FLECTRONIC SYSTEMS	AFS	IFFF Trans. Aerosp. Electron. Syst.
	ANE*	IEEE Trans. Aeronaut. Navia. Electron.*
	ANE*	IEEE Trans. Aerosp. Navia. Electron.*
	AS*	IEEE Trans. Aerosp.*
	MIL*	IEEE Trans. Mil. Electron.*
	AE*	IEEE Trans. Airborne Electron.*
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION	AP	IEEE Trans. Antennas Propag.
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS	LAWP	IEEE Antennas Wireless Propag. Lett.
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY	ASC	IEEE Trans. Appl. Supercond.
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING	ASLP	IEEE/ACM Trans. Audio, Speech, Language Process.
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING	ASL	IEEE Trans. Audio, Speech, Language Process. (2006–2013)
	SAP*	IEEE Speech Audio Process. (1993–2005)
IEEE TRANSACTIONS ON AUTOMATIC CONTROL	AC	IEEE Trans. Autom. Control
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING	ASE	IEEE Trans. Autom. Sci. Eng. (from July 2004)
IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT	AMD	IEEE Trans. Auton. Mental Develop.
IEEE TRANSACTIONS ON BIG DATA	BD	IEEE Trans. Big Data
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS	BHI	IEEE J. Biomed. Health Inform.
	ITB	IEEE Trans. Inf. Technol. Biomed. (1995–2012)
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS	BCAS	IEEE Trans. Biomed. Circuits Syst.
IEEE REVIEWS IN BIOMEDICAL ENGINEERING	RBME	IEEE Rev. Biomed. Eng.
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING	BME	IEEE Trans. Biomed. Eng.
	BME*	IEEE Trans. Bio Med. Eng.*
	BME*	IEEE Trans. Bio Med. Electron.*
	PGME*	IEEE Trans. Med. Electron.*
IEEE TRANSACTIONS ON BROADCASTING	BC	IEEE Trans. Broadcast.
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS	CSI	IEEE Trans. Circuits Syst. I, Reg. Papers
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS	CSII	IEEE Trans. Circuits Syst. II, Exp. Briefs
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS	CAS1*	IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. (1993–2003)
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING	CAS2*	IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.(1993–2003)
	CAS*	IEEE Trans. Circuits Syst.* (1974–1992)
	CT*	IEEE Trans. Circuit Theory* (until 1973)
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY	CSVT	IEEE Trans. Circuits Syst. Video Technol.
IEEE TRANSACTIONS ON CLOUD COMPUTING	CC	IEEE Trans. Cloud Comput.
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING	CCN	IEEE Trans. Cogn. Commun. Netw.
IEEE TRANSACTIONS ON COMMUNICATIONS	СОМ	IEEE Trans. Commun.
	COM*	IEEE Trans. Commun. Technol.* (until 1971)

Publication	Acronym	Reference Abbreviation
IEEE COMMUNICATIONS LETTERS	COMML	IEEE Commun. Lett.
IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY	CPMT	IEEE Trans. Compon. Packag. Manuf. Technol.
	CAPT	IEEE Trans. Compon. Packag. Technol. (1999–2010)
	СРМТА	IEEE Trans. Compon., Packag.,Manuf. Technol. A (1994–1998)
	CHMT*	IEEE Trans. Compon., Hybrids, Manuf. Technol.* (1978–1993)
	MFT*	IEEE Trans. Manuf. Technol.* (1972–1977)
	PHP*	IEEE Trans. Parts, Hybrids, Packag.* (June 1971–1977)
	PMP*	IEEE Trans. Parts, Mater., Packag.* (1965–1971)
	ADVP	IEEE Trans. Adv. Packag. (1999–2010)
	СРМТВ	IEEE Trans. Compon., Packag., Manuf. Technol. B (1994–1998)
	EPM	IEEE Trans. Electron. Packag. Manuf. (1999–2010)
	CPMTC	IEEE Trans. Compon., Packag., Manuf. Technol. C (1996–1998)
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS	CBB	IEEE/ACM Trans. Comput. Biol. Bioinf.
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES	CIAIG	IEEE Trans. Comput. Intell. AI in Games
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS	CSS	IEEE Trans. Comput. Social Syst.
IEEE TRANSACTIONS ON COMPUTERS	С	IEEE Trans. Comput.
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS	CAD	IEEE Trans. ComputAided Design Integr. Circuits Syst.
IEEE COMPUTER ARCHITECTURAL LETTERS	CAL	IEEE Comput. Archit. Lett.
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS	CE	IEEE Trans. Consum. Electron.
	BTR	IEEE Trans. Broadcast. Telev. Receiv. (1963–1974)
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY	CST	IEEE Trans. Control Svst. Technol.
IEEE TRANSACTIONS ON CYBERNETICS	СҮВ	
	SMCB*	IEEE Trans. Cybern.
		IEEE Trans. Svst. Man. Cvbern. B. Cvbern. (1995–2012)
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY	DMR	IEEE Trans. Device Mater. Rel.
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION	DEI	IEEE Trans. Dielectr. Electr. Insul.
	EI*	IEEE Trans. Electr. Insul.* (through 1993)
IEEE/OSA JOURNAL OF DISPLAY TECHNOLOGY	DT	J. Display Technol.
IEEE TRANSACTIONS ON EDUCATION	E	IEEE Trans. Educ.
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY	EMC	IEEE Trans. Electromagn. Compat.
	RFI*	IEEE Trans. Radio Freq. Interference*
IEEE TRANSACTIONS ON ELECTRON DEVICES	ED	IEEE Trans. Electron Devices
IEEE JOURNAL OF ELECTRON DEVICES SOCIETY	EDS	IEEE J. Electron Devices Soc.
IEEE ELECTRON DEVICE LETTERS	EDL	IEEE Electron Device Lett.
IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING	EPM	IEEE Trans. Electron. Packag. Manuf. (1999–2010)
IEEE EMBEDDED SYSTEMS LETTERS	ES	IEEE Embedded Syst. Lett.
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING	ETC	IEEE Trans. Emerg. Topics Comput.
IEEE TRANSACTIONS ON EMERGING AND SELECTED TOPICS IN	ETCAS	IEEE Trans. Emerg. Sel. Topics Circuits Syst.
CIRCUITS AND SYSTEMS		
IEEE TRANSACTIONS ON EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS	ESTPE	IEEE Trans. Emerg. Sel. Topics Power Electron.

Publication	Acronym	Reference Abbreviation
IEEE TRANSACTIONS ON ENERGY CONVERSION	EC	IEEE Trans. Energy Convers.
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT	EM	IEEE Trans. Eng. Manag.
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION	EVC	IEEE Trans. Evol. Comput.
IEEE TRANSACTIONS ON EXPLORATORY SOLID-STATE COMPUTATIONAL	XCDC	IEEE Trans.
DEVICES AND CIRCUITS		
IEEE TRANSACTIONS ON FUZZY SYSTEMS	FUZZ	IEEE Trans. Fuzzy Syst.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING	GRS	IEEE Trans. Geosci. Remote Sens.
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS	GRSL	IEEE Geosci. Remote Sens. Lett.
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS	HMS*	IEEE Trans. Human–Mach. Syst.
	SMCC*	IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. (1995–2012)
	SMC*	IEEE Trans. Syst., Man, Cybern.* (1971–1995)
	SSC*	IEEE Trans. Syst. Sci. Cybern.* (through 1970)
IEEE TRANSACTIONS ON IMAGE PROCESSING	IP	IEEE Trans. Image Process.
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS	IE	IEEE Trans. Ind. Electron.
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS	П	IEEE Trans. Ind. Informat.
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS	IA	IEEE Trans. Ind. Appl.
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY	IFS	IEEE Trans. Inf. Forensics Security
IEEE TRANSACTIONS ON INFORMATION THEORY	IT	IEEE Trans. Inf. Theory
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT	IM	IEEE Trans. Instrum. Meas.
	I, PGI*	IEEE Trans. Instrum.*
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS	ITS	IEEE Trans. Intell. Transp. Syst.
IEEE INTERNET OF THINGS JOURNAL	loT	IEEE Internet Things J.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING	KDE	IEEE Trans. Knowl. Data Eng.
IEEE LIFE SCIENCES LETTERS	LS	IEEE Life Sci. Lett.
IEEE/OSA JOURNAL OF LIGHTWAVE TECHNOLOGY	LT	J. Lightw. Technol.
IEEE TRANSACTIONS ON MAGNETICS	MAG	IEEE Trans. Magn.
IEEE MAGNETICS LETTERS	MAGL	IEEE Magn. Lett.
IEEE/ASME TRANSACTIONS ON MECHATRONICS	MECH	IEEE/ASME Trans. Mechatronics
IEEE TRANSACTIONS ON MEDICAL IMAGING	MI	IEEE Trans. Med. Imag.
IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS	MEMS	J. Microelectromech. Syst.
IEEE/ASME JOURNAL OF MICROELECTROMECHANICAL SYSTEMS	MEMS	J. Microelectromech. Syst. (1992–2013)
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS	MWCL	IEEE Microw. Compon. Lett.
	MGWL	IEEE Microw. Guided Wave Lett. (1991–2000)
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES	MTT	IEEE Trans. Microw. Theory Techn.
IEEE TRANSACTIONS ON MOBILE COMPUTING	MC	IEEE Trans. Mobile Comput.
IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL AND		IEEE Trans. Mol. Biol. Multi-Scale Commun.
MULTI-SCALE COMMUNICATIONS		
IEEE TRANSACTIONS ON MULTIMEDIA	MM	IEEE Trans. Multimedia
IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS		IEEE Trans. Multi-Scale Comput. Syst.
IEEE TRANSACTIONS ON NANOBIOSCIENCE	NB	IEEE Trans. Nanobiosci.
IEEE TRANSACTIONS ON NANOTECHNOLOGY	NANO	IEEE Trans. Nanotechnol.
IEEE NANOTECHNOLOGY EXPRESS	ENANO	IEEE Nanotechnol. Express
IEEE/ACM TRANSACTIONS ON NETWORKING	NET	IEEE/ACM Trans. Netw.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS	NNLS	IEEE Trans. Neural Netw. Learn. Syst.
	NN	IEEE Trans. Neural Netw. (1990–2011)

Publication	Acronym	Reference Abbreviation
IEEE TRANSACTIONS ON NUCLEAR SCIENCE	NS	IEEE Trans. Nucl. Sci.
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING	NSRE	IEEE Trans. Neural Syst. Rehabil. Eng.
	RE*	IEEE Trans. Rehabil. Eng.* (1993–2000)
IEEE JOURNAL OF OCEANIC ENGINEERING	OE	IEEE J. Ocean. Eng.
IEEE JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING	OCN	IEEE J. Opt. Commun. Netw.
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS	PDS	IEEE Trans. Parallel Distrib. Syst.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE	PAMI	IEEE Trans. Pattern Anal. Mach. Intell.
IEEE PHOTONICS TECHNOLOGY LETTERS	PTL	IEEE Photon. Technol. Lett.
IEEE PHOTONICS JOURNAL	PJ	IEEE Photon. J.
IEEE JOURNAL OF PHOTOVOLTAICS	PHOT	IEEE J. Photovolt.
IEEE TRANSACTIONS ON PLASMA SCIENCE	PS	IEEE Trans. Plasma Sci.
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS	PAS*	IEEE Trans. Power App. Syst.* (through 1985)
IEEE TRANSACTIONS ON POWER DELIVERY	PWRD	IEEE Trans. Power Del.
IEEE TRANSACTIONS ON POWER ELECTRONICS	PEL	IEEE Trans. Power Electron.
IEEE POWER ELECTRONICS LETTERS	LPEL	IEEE Power Electron Lett. (2003-2005; abolished)
IEEE TRANSACTIONS ON POWER SYSTEMS	PWRS	IEEE Trans. Power Syst.
IEEE JOURNAL OF PRODUCT SAFETY ENGINEERING	PSE	IEEE J. Product Safety Eng.
IEEE POWER AND ENERGY TECHNOLOGY SYSTEMS JOURNAL	PETS	IEEE Power Energy Technol. Syst. J.
IEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATION	PC	IEEE Trans. Prof. Commun.
IEEE JOURNAL OF QUANTUM ELECTRONICS	QE	IEEE J. Quantum Electron.
IEEE RFIC JOURNAL	RFIC	IEEE RFIC J.
IEEE RFID JOURNAL	RFID	IEEE RFID J.
IEEE TRANSACTIONS ON RELIABILITY	R	IEEE Trans. Rel.
IEEE TRANSACTIONS ON ROBOTICS	RO	IEEE Trans. Robot.
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION	RA*	IEEE Trans. Robot. Autom. (1989–June 2004)
	RA*	IEEE J. Robot. Autom.* (1985–1988)
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS IN REMOTE SENSING	STARS	IEEE J. Sel. Topics Appl. Earth Observ.
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS	SAC	IEEE J. Sel. Areas Commun.
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS	STQE	IEEE J. Sel. Topics Quantum Electron.
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING	STSP	IEEE J. Sel. Topics Signal Process.
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING	SM	IEEE Trans. Semicond. Manuf.
IEEE SENSORS JOURNAL	SEN	IEEE Sensors J.
IEEE TRANSACTIONS ON SIGNAL PROCESSING	SP	IEEE Trans. Signal Process.
	ASSP*	IEEE Trans. Acoust., Speech, Signal Process. * (1975–1990)
	AU*	IEEE Trans. Audio Electroacoust. (until 1974)
IEEE SIGNAL PROCESSING LETTERS	SPL	IEEE Signal Process. Lett.
IEEE TRANSACTIONS ON SMART GRID	SG	IEEE Trans. Smart Grid
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY	STE	IEEE Trans. Sustain. Energy
IEEE SYSTEMS JOURNAL	SJ	IEEE Syst. J.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING	SE	IEEE Trans. Softw. Eng.
IEEE JOURNAL OF SOLID-STATE CIRCUITS	SSC	IEEE J. Solid-State Circuits

Publication	Acronym	Reference Abbreviation
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS	SMC	IEEE Trans. Syst., Man, Cybern.,Syst.
	SMCA*	IEEE Trans. Syst., Man, Cybern. A, Syst.,Humans (1995-2012)
	MMS*	IEEE Trans. Man-Mach. Syst.* (through 1970)
	HFE*	Hum. Factors Electron.* (through 1968)
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE	TEHM	IEEE J. Transl. Eng. Health Med.
IEEE TRANSLATION JOURNAL ON MAGNETICS IN JAPAN	IMI	IEEE Transl. J. Magn. Jpn. (through 2010)
IEEE JOURNAL ON TECHNOLOGY IN COMPUTER AIDED DESIGN	TCAD	IEEE J. Technol. Computer Aided Des.
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY	THz	IEEE Trans. THz Sci. Technol.
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION		IEEE Trans. Transport. Electrific.
IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND	UFFC	IEEE Trans. Ultrason., Ferroelectr., Freq. Control
FREQUENCY CONTROL		
	SU*	IEEE Trans. Sonics Ultrason.* (through 1985)
	UE*	IEEE Trans. Ultrason. Eng.*
	PGUE*	IEEE Trans. Ultrason. Eng.*
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY	VT	IEEE Trans. Veh. Technol.
	VC*	IEEE Trans. Veh. Commun.*
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS	VLSI	IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS	VCG	IEEE Trans. Vis. Comput. Graphics
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS	WC	IEEE Trans. Wireless Commun.
PROCEEDINGS OF THE IEEE		Proc. IEEE
		Proc. IRE* (through 1962)

List of IEEE Magazines

List of IEEE Magazines

Magazine

IEEE Aerospace and Electronics Systems Magazine IEEE Annals of the History of Computing IEEE Antennas and Propagation Magazine IEEE ASSP Magazine (1984-1990) IEEE Circuits and Systems Magazine IEEE Circuits and Devices Magazine (1988-2006) IEEE Communications Society Magazine (through 1978) IEEE Communications Magazine (1979-present) **IEEE Computational Intelligence Magazine** IEEE Computing in Science and Engineering Magazine **IEEE Computer Applications in Power IEEE Computer Graphics and Applications Magazine IEEE Concurrency IEEE Consumer Electronics Magazine IEEE Control Systems Magazine IEEE Design & Test IEEE Electrical Insulation Magazine IEEE Electomagnetic Compatibility Magazine IEEE Electrification Magazine** IEEE ElectroTechnology Review **IEEE Engineering Management Review** IEEE Expert (through 1997) IEEE Geoscience and Remote Sensing Magazine **IEEE Industrial Electronics Magazine IEEE Industry Applications Magazine** IEEE Instrumentation and Measurement Magazine IEEE Intelligent Systems (formerly IEEE Expert) **IEEE Intelligent Transportation Systems Magazine IEEE Internet Computing Magazine IEEE IT Professional IEEE Micro Magazine IEEE Microwave Magazine IEEE MultiMedia** IEEE Nanotechnology Magazine IEEE Network **IEEE** Personal Communications **IEEE** Potentials **IEEE Power Electronics Magazine IEEE** Power and Energy Magazine **IEEE Power Engineering Review IEEE** Pulse **IEEE Robotics and Automation Magazine** IEEE Signal Processing Magazine (1991-present)

Reference Abbreviation

IEEE Aerosp. Electron. Syst. Mag. IEEE Ann. Hist. Comput. IEEE Antennas Propag. Mag. IEEE ASSP Mag. IEEE Circuits Syst. Mag. IEEE Circuits Devices Mag. IEEE Commun. Soc. Mag. IEEE Commun. Mag. IEEE Comput. Intell. Mag. IEEE Comput. Sci. Eng. IEEE Comput. Appl. Power IEEE Comput. Graph. Appl. Mag. IEEE Concurrency IEEE Consum. Electron. Mag. IEEE Control Syst. Mag. IEEE Des. Test. IEEE Des. Test. Comput.* (through 2012) IEEE Elect. Insul. Mag. IEEE Electrmagn. Compat. IEEE Electrific. Mag. IEEE ElectroTechnol. Rev. IEEE Eng. Med. Biol. Mag. (1982-2009) IEEE Eng. Manag. Rev. IEEE Expert IEEE Geosci. Remote Sens. Mag. (replaces Newsletter) IEEE Ind. Electron. Mag. IEEE Ind. Appl. Mag. IEEE Instrum. Meas. Mag. IEEE Intell. Syst. IEEE Intell. Transp. Syst. Mag. IEEE Internet Comput. IEEE IT Prof. IEEE Micro IEEE Microw. Mag. IEEE Multimedia Mag. IEEE Nanotechnol. Mag. IEEE Netw. IEEE Pers. Commun. **IEEE** Potentials IEEE Power Electron. Mag. IEEE Power Energy Mag. IEEE Power Eng. Rev. IEEE Pulse IEEE Robot. Autom. Mag.

IEEE Signal Process. Mag.

List of IEEE Magazines

Magazine

IEEE Solid-State Circuits Magazine IEEE Security and Privacy IEEE Software IEEE Spectrum IEEE Technology and Society Magazine IEEE Vehicular Technology Magazine China Communications Magazine Communications Surveys and Tutorials Computer Magazine Internet Computing Pervasive Computing Today's Engineer Wireless Communications

Reference Abbreviation

IEEE Solid State Circuits Mag. IEEE Security Privacy IEEE Softw. IEEE Spectr. IEEE Technol. Soc. Mag. IEEE Veh. Technol. Mag. China Commun. Commun. Surveys Tuts. Computer Internet Comput. Pervasive Comput. Today's Engineer Wireless Commun.

2014 IEEE Taxonomy

Version 1.0

Created by The Institute of Electrical and Electronics Engineers (IEEE)

Advancing Technology for Humanity

IEEE Taxonomy: A Subset Hierarchical Display of IEEE Thesaurus Terms

The IEEE Taxonomy comprises the first three hierarchical 'levels' under each term-family (or branch) that is formed from the top-most terms of the IEEE Thesaurus. In this document these term-families are arranged alphabetically and denoted by **boldface** type. Each term family's hierarchy goes to no more than three sublevels, denoted by indents (in groups of four dots) preceding the next level terms. A term can appear in more than one hierarchical branch and can appear more than once in any particular hierarchy. The 2014 IEEE Taxonomy is defined in this way so that it is always a subset of the 2014 IEEE Thesaurus.

Aerospace and electronic systems
Aerospace control
Air traffic control
Attitude control
Ground support
Aerospace engineering
Aerospace biophysics
Aerospace electronics
Aerospace safety
Air safety
Aerospace simulation
Aerospace testing
Satellites
Artificial satellites
Earth Observing System
Low earth orbit satellites
Moon
Space stations
Space technology
Space exploration
Aerospace materials
Aerospace components
Aircraft manufacture
Aircraft navigation
Aircraft propulsion
Propellers
Command and control systems
Electronic warfare
Electronic countermeasures
Jamming
Radar countermeasures
Military equipment
Military aircraft
Payloads
Military satellites
Weapons
Guns
Missiles
Nuclear weapons
Projectiles
Radar

.....Airborne radarBistatic radarDoppler radarGround penetrating radarLaser radarMeteorological radarMillimeter wave radarMultistatic radarMIMO radarPassive radarRadar applicationsRadar countermeasuresRadar detectionRadar imagingRadar measurementsRadar polarimetryRadar remote sensingRadar trackingRadar clutterRadar cross-sectionsRadar equipmentRadar theorySpaceborne radarSpread spectrum radarSynthetic aperture radarInverse synthetic aperture radarPolarimetric synthetic aperture radarUltra wideband radarSensor systemsGunshot detection systemsSonarSonar applicationsSonar detectionSonar measurementsSonar equipmentSynthetic aperture sonarTelemetryBiomedical telemetry

Antennas and propagation

....AntennasAntenna accessoriesAntenna arraysAdaptive arraysButler matricesLinear antenna arraysLog periodic antennasMicrostrip antenna arraysMicrowave antenna arraysPhased arraysPlanar arraysAntenna radiation patternsNear-field radiation patternAntenna theoryFrequency selective surfacesAperturesAperture antennasAperture coupled antennasBroadband antennasUltra wideband antennasVivaldi antennasDielectric resonator antennasDipole antennasDirectional antennasDirective antennasFeedsAntenna feedsFractal antennasHelical antennasHorn antennasLeaky wave antennasLoaded antennasLog-periodic dipole antennasMicrostrip antennasMicrowave antennasMobile antennasMultifrequency antennasOmnidirectional antennasPatch antennasRadar antennasReceiving antennasRectennasReflector antennasSatellite antennasSlot antennasTransmission line antennasTransmitting antennasUHF antennasYagi-Uda antennasElectromagnetic propagation

......Electromagnetic diffractionOptical diffractionPhysical theory of diffractionX-ray diffractionElectromagnetic propagation in absorbing mediaElectromagnetic reflectionOptical reflectionMicrowave propagationMillimeter wave propagationOptical propagationOptical surface wavesOptical waveguidesPropagation constantPropagation lossesRadio propagationRadiowave propagationSubmillimeter wave propagationUHF propagationRadio astronomy

Broadcast technology

....BroadcastingDigital audio broadcastingDigital audio playersDigital Radio MondialeDigital multimedia broadcastingDigital video broadcastingRadio broadcastingFrequency modulationRadio networksSatellite broadcastingTV broadcasting

Circuits and systems

....CircuitsActive circuitsActive inductorsGyratorsOperational amplifiersAddersAnalog circuitsAnalog integrated circuitsAnalog processing circuitsApplication specific integrated circuitsSystem-on-chipAsynchronous circuitsBipolar integrated circuitsBiCMOS integrated circuits

......Bipolar transistor circuitsBipolar integrated circuitsBistable circuitsLatchesBridge circuitsCharge pumpsCircuit analysisCircuit analysis computingCoupled mode analysisNonlinear network analysisCircuit faultsElectrical fault detectionCircuit noiseThermal noiseCircuit simulationCircuit synthesisHigh level synthesisIntegrated circuit synthesisCoprocessorsCounting circuitsCoupling circuitsDigital circuitsCircuit topologyDigital integrated circuitsDigital signal processorsDistributed parameter circuitsDriver circuitsElectronic circuitsBreadboard circuitCentral Processing UnitStripboard circuitEquivalent circuitsFeedbackFeedback circuitsNegative feedbackNeurofeedbackHybrid integrated circuitsIntegrated circuitsAnalog-digital integrated circuitsAnalog integrated circuitsApplication specific integrated circuitsBipolar integrated circuitsCMOS integrated circuitsCoprocessorsCurrent-mode circuitsDigital integrated circuitsFET integrated circuitsField programmable gate arraysHybrid integrated circuitsIntegrated circuit interconnections

.....Integrated circuit modelingIntegrated circuit noiseIntegrated circuit synthesisLarge scale integrationMESFET integrated circuitsMicroprocessorsMicrowave integrated circuitsMillimeter wave integrated circuitsMixed analog digital integrated circuitsMonolithic integrated circuitsPhotonic integrated circuitsPower integrated circuitsRadiofrequency integrated circuitsSubmillimeter wave integrated circuitsSuperconducting integrated circuitsThick film circuitsThin film circuitsThree-dimensional integrated circuitsThrough-silicon viasUHF integrated circuitsUltra large scale integrationVery high speed integrated circuitsVery large scale integrationWafer scale integrationIsolatorsLarge scale integrationUltra large scale integrationVery large scale integrationWafer scale integrationLinear circuitsLogic arraysProgrammable logic arraysLogic circuitsCombinational circuitsLogic arraysProgrammable logic arraysSuperconducting logic circuitsMagnetic circuitsMicroprocessorsAutomatic logic unitsBiomimeticsCoprocessorsMicrocontrollersMicroprocessor chipsVector processorsMicrowave circuitsMillimeter wave circuitsMillimeter wave integrated circuits

......Millimeter wave integrated circuitsMIMICsMonolithic integrated circuitsMIMICsMMICsMOSFET circuitsCMOSFET circuitsMOS integrated circuitsPower MOSFETMultiplying circuitsNonlinear circuitsNonlinear network analysisPassive circuitsPhase shiftersPhase transformersPower dissipationPower integrated circuitsPrinted circuitsFlexible printed circuitsProgrammable circuitsField programmable analog arraysProgrammable logic arraysProgrammable logic devicesProgrammable logic arraysProgrammable logic devicesPulse circuitsFlip-flopsRadiation detector circuitsRail to rail operationRail to rail amplifiersRail to rail inputsRail to rail outputsRectifiersRLC circuitsSampled data circuitsSequential circuitsSilicon-on-insulatorSilicon on sapphireSubmillimeter wave circuitsSubmillimeter wave integrated circuitsSumming circuitsSwitched circuitsSwitched capacitor circuitsSwitching circuitsChoppers (circuits)Logic circuitsSwitching convertersZero current switchingZero voltage switchingThick film circuits

.....Thin film circuitsThyristor circuitsTime varying circuitsTrigger circuitsUHF circuitsUHF integrated circuitsUHF integrated circuitsUltra large scale integrationVery large scale integrationNeuromorphicsWafer scale integrationVHF circuitsWafer scale integrationContactsBrushesContact resistanceOhmic contactsFilteringFiltersActive filtersAnisotropicBragg gratingsChannel bank filtersDigital filtersEqualizersFiltering theoryGabor filters Harmonic filtersIIR filtersKalman filtersLow-pass filtersMatched filtersMicrostrip filtersNonlinear filtersParticle filtersPower filtersResonator filtersSpatial filtersSuperconducting filtersTransversal filtersInformation filteringInformation filtersRecommender systemsIntegrated circuit technologyCMOS technologyCMOS processSilicon on sapphireMoore's LawLogic devicesLogic gatesProgrammable logic devices

....OscillatorsDigital-controlled oscillatorsInjection-locked oscillatorsLocal oscillatorsMicrowave oscillatorsPhase noiseRing oscillatorsVoltage-controlled oscillatorsSingle electron devicesSingle electron memoryHetero-nanocrystal memorySingle electron transistorsTunable circuits and devicesRLC circuitsTuned circuits

Communications technology

....Communication equipmentAuditory displaysCodecsSpeech codecsVideo codecsModemsOptical communication equipmentOptical transmittersRadio communication equipmentBase stationsHam radiosLand mobile radio equipmentRadio transceiversTranspondersReceiversOptical receiversRAKE receiversReceiving antennasRepeatersSpeech codecsTelephone equipmentCellular phonesTelephone setsVocodersTransceiversRadio transceiversTransmittersAuxiliary transmittersDiversity methodsNeurotransmittersOptical transmittersRadio transmittersTransmitting antennas

.....TranspondersTV equipmentLarge screen displaysTV receiversVideo codecsVideo equipmentVideo codecsVocodersCommunication switchingCode division multiplexingElectronic switching systemsFrame relayHandoverMultiprotocol label switchingPacket switchingBurst switchingFrame relayMultiprotocol label switchingPacket lossCommunication systemsARPANETBiomedical communicationBiomedical telemetryTelemedicineBroadband communicationB-ISDNBroadband amplifiersCommunication networksCentral officeCyberspaceIndustrial communicationRelay networks (telecommunications)Software defined networkingCommunication system controlTelecommunication controlCommunication system securityRadio communication countermeasuresCommunication system signalingCommunication system softwareStreaming mediaCommunication system trafficCommunication system traffic controlComputer networksAd hoc networksComputer network managementContent distribution networksCyberspaceDiffserv networksDomain Name System

.....Ethernet networksGoogleInternetIntserv networksIP networksMetropolitan area networksMultiprocessor interconnection networksNetwork serversNext generation networkingOverlay networksPeer-to-peer computingSoftware defined networkingStorage area networksToken networksUnicastVirtual private networksWide area networksCross layer designData busesBackplanesData communicationAsynchronous communicationAsynchronous transfer modeData busesData transferTelecommunication buffersTelemetryTeleprintingDigital communicationBasebandDICOMDigital audio broadcastingDigital imagesDigital multimedia broadcastingDigital video broadcastingDŠLISDNPassbandPortable media playersSONETSpread spectrum communicationFacsimileFDDIIndoor communicationIndoor environmentsInternetCrowdsourcingInstant messagingInternet of ThingsInternet telephony

.....Internet topologyMiddleboxesSemantic WebSocial computingWeb 2.0Web servicesIP networksTCPIPISDNB-ISDNLand mobile radio cellular systemsCellular networksPaging strategiesLocal area networksWireless LANMachine-to-machine communicationsMetropolitan area networksMicrowave communicationRectennasMilitary communicationReconnaissanceMillimeter wave communicationMIMORician channelsMobile communication4G mobile communicationAmbient networksDual bandLand mobile radioLand mobile radio cellular systemsMobile nodesMobile radio mobility managementSoftware radioMolecular communicationMultiaccess communicationDirect-sequence code-division multiple accessFrequency division multiaccessMulticarrier code division multiple accessSubscriber loopsTime division multiple accessTime division synchronous code division multiple accessMulticast communicationMulticast VPNMultimedia communicationNarrowbandOptical fiber communicationFDDI

.....Optical bufferingOptical fiber networksOptical fiber subscriber loopsOptical interconnectionsOptical packet switchingOptical wavelength conversionScheduling algorithmsSONETPersonal communication networksProtocolsAccess protocolsAsynchronous transfer modeCryptographic protocolsMaster-slaveMulticast protocolsMultiprotocol label switchingRouting protocolsTransport protocolsWireless application protocolQuality of serviceAdmission controlRadio communicationBasebandBluetoothIndoor radio communicationLand mobile radioLand mobile radio cellular systemsPacket radio networksPassbandPersonal area networksRadio broadcastingRadio communication countermeasuresRadio frequencyRadio linkRadio spectrum managementSatellite communicationSatellite ground stationsSoftware radioZigbeeRoutingWavelength routingSatellite communicationDownlinkSatellite broadcastingSatellite ground stationsUplinkSatellite ground stationsSIMOSISOSpatial diversity

......Submillimeter wave communicationSubscriber loopsSwitching systemsElectronic switching systemsSwitching frequencySwitching lossTelecommunication switchingSynchronous digital hierarchyTelecommunicationsAmbient intelligenceFeedback communicationsIP networksRadio access networksRailway communicationTelecommunication computingTelecommunication network topologyTelecommunication servicesTelematicsTeleconferencingTelegraphyTelephonyTeleprintingTeletextToken networksUHF communicationUnderwater communicationVideophone systemsVideotexVisual communicationWide area networksWidebandWireless communicationCognitive radioCooperative communicationGSMOpen wireless architectureRoamingSpatial diversityWiMAXWireless application protocolWireless networksWireless mesh networksWireless sensor networksBody sensor networksEvent detectionCouplersDirectional couplersHigh-speed electronicsHigh-speed integrated circuitsHigh-speed networks

.....Ultrafast electronicsImage communicationFacsimilePicture archiving and communication systemsMessage systemsElectronic mailUnified messagingUnsolicited electronic mailElectronic messagingInstant messagingUnified messagingPostal servicesPublish subscribe systemsVoice mailModulationAmplitude modulationAmplitude shift keyingQuadrature amplitude modulationChirp modulationDemodulationDigital modulationConstellation diagramPartial response signalingFrequency modulationFrequency shift keyingMagnetic modulatorsModulation codingInterleaved codesOptical modulationElectrooptic modulatorsIntensity modulationPhase modulationContinuous phase modulationDifferential phase shift keyingPhase shift keyingPulse modulationPulse width modulationPulse width modulation invertersSpace vector pulse width modulationMultiplexingCode division multiplexingDemultiplexingFrequency division multiplexingMultiplexing equipmentAdd-drop multiplexersOFDMMultiple access interferenceOFDM modulationPartial transmit sequences

.....Peak to average power ratioTime division multiplexingWavelength division multiplexingWDM networksNetwork topologyComplex networksComputer network reliabilityPresence network agentsTVCable TVDigital TVAnalog TVHDTVIPTVMobile TVThree-dimensional televisionUHF technologyUHF antennasUHF circuitsUHF integrated circuitsUHF communicationUHF devicesUHF integrated circuitsUltra wideband technologyUltra wideband antennasUltra wideband communicationUltra wideband radarVHF devices

Components, packaging, and manufacturing technology

....Component architecturesElectronic componentsCapacitorsPower capacitorsVaractorsCoilsSuperconducting coilsConnectorsPlugsSocketsDiodesDiode lasersElectrodesAnodesCathodesMicroelectrodesFusesInductorsActive inductors

.....Thick film inductorsThin film inductorsResistorsMemristorsSwitched capacitor networksVaristorsStructural platesSwitchesContactorsMicroswitchesOptical switchesTransducersAcoustic transducersBiomedical transducersChemical transducersPiezoelectric transducersUltrasonic transducer arraysElectronic equipment manufactureDamascene integrationMicromachiningRadiation hardening (electronics)Semiconductor device manufactureDiffusion processesFlip-chip devicesHigh-K gate dielectricsQuasi-dopingSemiconductor device dopingSemiconductor epitaxial layersSemiconductor growthSilicidationWafer bondingElectronics packagingChip scale packagingEnvironmentally friendly manufacturing techniquesIntegrated circuit manufactureSurface-mount technologyIntegrated circuit packagingMultichip modulesPlastic integrated circuit packagingSemiconductor device packagingThermal management of electronicsElectronic packaging thermal managementElectronics cooling

Computational and artificial intelligence

....Artificial intelligenceContext awarenessCooperative systems

.....Decision support systemsIntelligent systemsIntelligent robotsKnowledge based systemsExpert systemsMobile agentsKnowledge engineeringInference mechanismsKnowledge acquisitionKnowledge discoveryKnowledge representationLearning (artificial intelligence)Distance learningElectronic learningLearning systemsBackpropagationLearning automataSemisupervised learningSupervised learningUnsupervised learningMachine learningBoostingStatistical learningPrediction methodsLinear predictive codingPredictive codingPredictive encodingPredictive modelsAutonomous mental developmentComputational intelligenceComputation theoryComputational complexityConcurrent computingGreedy algorithmsSupport vector machinesEvolutionary computationParticle swarm optimizationFuzzy systemsFuzzy controlFuzzy neural networksHybrid intelligent systemsGenetic algorithmsLogicFuzzy logicFuzzy cognitive mapsTakagi-Sugeno modelMultivalued logicProbabilistic logicSufficient conditionsMachine intelligencePattern analysis

....Neural networksArtificial neural networksHebbian theorySelf-organizing feature mapsBiological neural networksCellular neural networksFeedforward neural networksMultilayer perceptronsMulti-layer neural networkNeural network hardwareRadial basis function networksRecurrent neural networksHopfield neural networks

Computers and information processing

....Computer applicationsAffective computingApplication virtualizationComputer aided analysisComputer aided engineeringComputer aided instructionComputer generated musicComputer integrated manufacturingControl engineering computingGreen computingHigh energy physics instrumentation computingLinear particle acceleratorKnowledge managementKnowledge transferMedical information systemsElectronic medical recordsMilitary computingPhysics computingPower engineering computingPower system analysis computingPublishingBibliometricsCompany reportsDesktop publishingElectronic publishingOpen AccessScientific publishingScientific computingTelecommunication computingInternetworkingSoft switchingVirtual enterprisesVirtual manufacturingVirtual machining

.....Web sitesFacebookMySpaceUniform resource locatorsWeb designYouTubeWorld Wide WebMashupsComputer architectureAccelerator architecturesData structuresArraysBinary decision diagramsNull valueOctreesTable lookupTree data structuresDynamic voltage scalingMemory architectureMemory managementMultiprocessor interconnectionHypercubesParallel architecturesMulticore processingReconfigurable architecturesComputer interfacesApplication programming interfacesWebRTCBrowsersField busesFirewireHaptic interfacesData glovesForce feedbackGraspingHypertext systemsInterface phenomenaNetwork interfacesInterface statesMusical instrument digital interfacesPorts (Computers)System busesComputer networksAd hoc networksAODVMesh networksMobile ad hoc networksVehicular ad hoc networksComputer network managementComputer network reliabilityDisruption tolerant networking

......Management information baseMiddleboxesNetwork address translationNetwork synthesisContent distribution networksCyberspaceDiffserv networksDomain Name SystemEthernet networksEPONGooaleInternetCrowdsourcingInstant messagingInternet of ThingsInternet telephonyInternet topologyMiddleboxesSemantic WebSocial computingWeb 2.0Web servicesIntserv networksIP networksTCPIPMetropolitan area networksMultiprocessor interconnection networksNetwork serversNext generation networkingOverlay networksPeer-to-peer computingSoftware defined networkingStorage area networksToken networksUnicastVirtual private networksExtranetsWide area networksComputer performanceComputer errorsComputer crashesPerformance lossComputer peripheralsDisk drivesKeyboardsModemsPrintersComputersAnalog computersCalculators

.....Difference enginesMicrocomputersPortable computersWorkstationsParallel machinesSupercomputersTablet computersWearable computersComputer scienceFormal languagesComputer languagesRuntime libraryNetwork theory (graphs)ProgrammingAugmented realityAutomatic programmingConcatenated codesFunctional programmingGranular computingInteger linear programmingLogic programmingMicroprogrammingObject oriented methodsObject oriented programmingOpportunistic software systems developmentParallel programmingPerformance analysisProgramming professionRobot programmingConcurrency controlProcessor schedulingScheduling algorithmsDatabase machinesData systemsData acquisitionFastbusUser-generated contentData compressionAdaptive codingAudio compressionHuffman codingSource codingTest data compressionTransform codingData conversionAnalog-digital conversionDigital-analog conversionData engineeringData handlingData assimilation

.....Data encapsulationDocument handlingMergingSortingData processingAssociative processingBusiness data processingData analysisData collectionData integrationData preprocessingData transferInformation exchangeSpreadsheet programsText processingVirtual enterprisesData storage systemsData warehousesDigital systemsInternetCrowdsourcingInstant messagingInternet of ThingsInternet telephonyInternet topologyMiddleboxesSemantic WebSocial computingWeb 2.0Web servicesISDNB-ISDNLocal area networksWireless LANMetropolitan area networksToken networksDistributed computingClient-server systemsMiddlewareServersCollaborative workCooperative communicationCrowdsourcingSocial computingDiffserv networksDistributed databasesDistributed information systemsPublish-subscribeInternetCrowdsourcingInstant messaging

.....Internet of ThingsInternet telephonyInternet topologyMiddleboxesSemantic WebSocial computingWeb 2.0Web servicesMetacomputingGrid computingPeer-to-peer computingDNA computingFile serversHardwareOpen source hardwareHigh performance computingImage processingActive shape modelFeature extractionGeophysical image processingGray-scaleImage analysisImage classificationImage motion analysisImage gualityImage sequence analysisImage texture analysisObject detectionSubtraction techniquesImage codingImage color analysisImage decompositionImage denoisingImage enhancementImage fusionImage generationPlasma displaysVisual effectsImage recognitionImage edge detectionImage reconstructionImage registrationImage representationImage resolutionHigh-resolution imagingSpatial resolutionImage restorationImage samplingImage segmentationImage sequencesImage texture

......Machine visionObject recognitionObject segmentationMorphological operationsOptical feedbackSmart pixelsSpatial coherenceTable lookupMemoryAnalog memoryAssociative memoryBuffer storageComputer buffersCache memoryCache storageContent addressable storageFlash memoriesFlash memory cellsMagnetic memoryFloppy disksHard disksMemory managementNonvolatile memoryNonvolatile single electron memoryPhase change memoryPhase change random access memoryRandom access memoryDRAM chipsPhase change random access memorySDRAMSRAM cellsSRAM chipsRead only memoryPROMRead-write memoryRegistersShift registersScanning probe data storageSemiconductor memoryMobile computingMolecular computingMultitaskingParametric studyOpen systemsOpen AccessPublic domain softwarePhysical layerOptical computingParallel processing

......Multiprocessing systemsData flow computingProcessor schedulingSystolic arraysMultithreadingParallel algorithmsPipeline processingPattern recognitionActive shape modelCharacter recognitionClustering methodsPattern clusteringData miningAssociation rulesData privacyText analysisText miningWeb miningFace recognitionFingerprint recognitionGesture recognitionSign languageHandwriting recognitionForgeryPattern matchingImage matchingSpeech recognitionAutomatic speech recognitionSpeech analysisText recognitionPervasive computingUbiquitous computingContext-aware servicesWearable computersPetascale computingPlatform virtualizationQuantum computingQuantum cellular automataReal-time systemsWebRTCSoftwareApplication softwareEmbedded softwareMiddlewareMediationMessage-oriented middlewareWeb servicesOpen source softwareOptical character recognition softwarePublic domain softwareSoftware agents

.....Autonomous agentsIntelligent agentsSoftware as a serviceSoftware debuggingSoftware designSoftware maintenanceSoftware packagesEMTDCMATLABPSCADSPICESoftware performanceSoftware qualitySoftware reusabilitySoftware safetySoftware systemsSoftware toolsAuthoring systemsSystem softwareFile systemsOperating systemsProgram processorsUtility programsSoftware engineeringCapability maturity modelComputer aided software engineeringFormal verificationProgramming environmentsReasoning about programsRuntimeDynamic compilerRuntime environmentSoftware architectureClient-server systemsMicroarchitectureRepresentational state transferSoftware librariesSystem recoveryCheckpointingCore dumpsDebuggingTime sharing computer systemsVirtual machine monitors

Consumer electronics

....Ambient intelligenceAudio systemsAudio-visual systemsAuditory displaysHeadphones

.....LoudspeakersMicrophonesMicrophone arraysPortable media playersSonificationHome automationPortable media playersRefrigeratorsSmart homesWashing machinesHome computingLow-power electronicsMicrowave ovensMultimedia systemsMultimedia communicationMultimedia computingMultimedia databases

Control systemsAutomatic controlPower generation controlAutomatic generation controlBidirectional controlCAMACCentralized controlClosed loop systemsControl designControl engineeringControl equipmentActuatorsElectrostatic actuatorsHydraulic actuatorsIntelligent actuatorsMicroactuatorsPiezoelectric actuatorsPneumatic actuatorsFastenersMicrocontrollersRegulatorsServosystemsServomotorsSwitchesContactorsMicroswitchesOptical switchesSwitchgearCircuit breakersInterruptersRelaysTelecontrol equipment

.....ThermostatsControllabilityControl system synthesisDecentralized controlDistributed parameter systemsDelay systemsAdded delayDelay linesDigital controlProgrammable controlFlow graphsFeedbackFeedback circuitsOutput feedbackNegative feedbackNeurofeedbackFluid flow controlFluidicsMicrofluidicsNanofluidicsLinear feedback control systemsFrequency locked loopsPhase locked loopsState feedbackTracking loopsMagnetic variables controlMechanical variables controlDisplacement controlForce controlLevel controlGyroscopesMotion controlCollision avoidanceCollision mitigationKinetic theoryMotion planningPath planningVisual servoingPosition controlNanopositioningShape controlSize controlStrain controlStress controlThickness controlTorque controlVelocity controlAngular velocity controlVibration controlWeight controlMedical control systems

....Moisture controlHumidity controlMotion compensationNetworked control systemsNonlinear control systemsOpen loop systemsOptical controlLighting controlOptical variables controlOptimal controlBang-bang controlInfinite horizonPD controlPi controlPneumatic systemsPressure controlProportional controlRadio controlRobot controlRobot motionSCADA systemsSensorless controlSliding mode controlSupervisory controlSCADA systemsThermal variables controlTemperature controlCoolingHeatingThermal analysisThermomechanical processesTraffic controlQueueing analysisVehicle routing Dielectrics and electrical insulationDielectricsDielectric constantHigh-K gate dielectricsDielectric devicesCapacitorsFerroelectric devicesPiezoelectric devicesPyroelectric devices

-Dielectric losses
-Dielectric substrates
-Dielectrophoresis
-Electrohydrodynamics
-ElectrokineticsElectrostriction

....Electric breakdownAvalanche breakdownCoronaDielectric breakdownArc dischargesDischarges (electric)Electrostatic dischargesFlashoverGlow dischargesPartial dischargesSurface dischargesVacuum breakdownSparksInsulationCable insulationPower cable insulationCeramicsPorcelainGas insulationSulfur hexafluorideInsulatorsMetal-insulator structuresPlastic insulatorsRubberTopological insulatorsTrees - insulationIsolation technologyOil insulationOil filled cablesPlastic insulation

Education

....Computer science educationContinuing educationEducation coursesEducational institutionsEducational technologyComputer aided instructionCoursewareElectronic learningEngineering educationBiomedical engineering educationCommunication engineering educationControl engineering educationElectrical engineering educationElectronics engineering educationEngineering studentsPower engineering educationStudent experimentsSystems engineering education

....Physics educationPower engineering educationQualificationsTrainingIndustrial trainingManagement trainingOn the job trainingVocational training Electromagnetic compatibility and interferenceElectromagnetic compatibilityImmunity testingReverberation chambersElectromagneticsElectromagnetic analysisAir gapsComputational electromagneticsDelay effectsElectromagnetic fieldsElectromagnetic forcesElectromagnetic refractionPermeabilitySpark gapsTime-domain analysisElectromagnetic couplingMutual couplingOptical couplingElectromagnetic devicesElectromagnetic inductionEddy currentsInductive power transmissionElectromagnetic metamaterialsElectromagnetic radiationCorrelatorsElectromagnetic wave absorptionFrequencyGamma-raysLine-of-sight propagationElectromagnetic shieldingCable shieldingMagnetic shieldingElectromagnetic transientsEMP radiation effectsEMTDCEMTP

-Power system transientsSurges
-Proximity effectsInterference

.....ClutterCrosstalkDiffractionEcho interferenceElectromagnetic interferenceRadiofrequency interferenceSpecific absorption rateElectromagnetic radiative interferenceElectrostatic interferenceImmunity testingInterchannel interferenceInterference cancellationInterference channelsInterference constraintsInterference eliminationInterference suppressionIntersymbol interferenceRain fadingTerrain factorsTV interference

Electron devices

....Cathode ray tubesElectron gunsElectron multipliersElectron tubesField emitter arraysKlystronsMagnetronsThyratronsMechatronicsBiomechatronicsMicroelectromechanical systemsMicroelectromechanical devicesMicroactuatorsMicromotorsMicropumpsMicrovalvesRadiofrequency microelectromechanical systemsMicrofluidicsMicromechanical devicesBiomedical microelectromechanical systemsFluidic microsystemsMicrofabricationPhotoelectricityPhotovoltaic effectsShunts (electrical)Photovoltaic cells

.....Light trappingQuantum computingQuantum cellular automataQuantum well devicesQuantum well lasersQuantum cascade lasersQuantum wellsTwo dimensional hole gasSemiconductivitySemiconductor devicesFlip-chip devicesGunn devicesHall effect devicesJunctionsHeterojunctionsHybrid junctionsP-n junctionsWaveguide junctionsMIS devicesCharge coupled devicesMOS devicesMONOS devicesPiezoresistive devicesP-i-n diodesPower semiconductor devicesPower transistorsPower semiconductor switchesBipolar transistorsThyristorsQuantum dotsQuantum well lasersQuantum cascade lasersSchottky diodesSemiconductor countersSemiconductor detectorsSemiconductor device modelingSemiconductor device noiseSemiconductor diodesP-i-n diodesSchottky diodesSemiconductor-metal interfacesSuperluminescent diodesVaractorsSemiconductor-insulator interfacesSemiconductor lasersLaser tuningQuantum dot lasersQuantum well lasersSemiconductor laser arraysSemiconductor optical amplifiersSurface emitting lasers

......Semiconductor waveguidesSilicon devicesSONOS devicesSuperluminescent diodesSurface emitting lasersVertical cavity surface emitting lasersThermistorsTransistorsField effect transistorsHeterojunction bipolar transistorsMillimeter wave transistorsPhototransistorsSingle electron devicesSingle electron memoryHetero-nanocrystal memorySingle electron transistorsThick film devicesThick film inductorsThin film devicesFilm bulk acoustic resonatorsThin film inductorsThin film transistorsOrganic thin film transistorsTunnelingGate leakageJosephson effectMagnetic tunnelingResonant tunneling devicesTunneling magnetoresistanceVacuum technologyPhotomultipliersVacuum systemsGettering

Electronic design automation and methodology

....Design automationCADCAMLogic designReconfigurable logicPSCADDesign methodologyDesign for disassemblyDesign for experimentsDesign for manufactureDesign for qualityDesign for testabilityGraphicsAnimation

.....ArtCharacter generationComputer graphicsEngineering drawingsLayoutShapeSymbolsVirtual realityVisualizationGreen designEcodesignGreen computingProcess designPattern formationProduct designPrototypesTechnical drawingTime to marketUser centered designVirtual prototyping

Engineering - general

....Acoustical engineeringAgricultural engineeringChemical engineeringCivil engineeringRailway engineeringRailway safetyStructural engineeringOffshore installationsConcurrent engineeringDesign engineeringElectrical engineeringElectrical engineering computingEngineering professionMaintenance engineeringPredictive maintenancePreventive maintenanceCondition monitoringMechanical engineeringMechanical power transmissionTorque convertersMechanical systemsMechanical energyMicromechanical devicesPrecision engineeringProduction engineeringProduction planningCapacity planningMaterials requirements planning

.....Process planningResearch and developmentReverse engineeringSanitary engineeringStandardizationFormal specificationsGuidelinesStandardsANSI standardsCode standardsCommunication standardsIEC standardsIEEE standardsISO standardsMeasurement standardsMilitary standardsSoftware standardsStandards activities boardStandards organizationsTelecommunication standardsUniversal Serial BusThermal engineering

Engineering in medicine and biology

....BioinformaticsBiologyBiochemistryAmino acidsBiochemical analysisPeptidesProteinsBiodiversityBiogeographyBioelectric phenomenaElectric shockBiological cellsCells (biology)Chromosome mappingFibroblastsRNAStem cellsBiological information theoryBiological processesBiological interactionsChronobiologyCircadian rhythmCoagulationSymbiosisBiological system modelingBiological systems

.....AnatomyMolecular communicationOrganismsBiology computingBiophotonicsBiophysicsAerospace biophysicsBiomagneticsCellular biophysicsMolecular biophysicsEvolution (biology)MemeticsPhylogenyGeneticsDNAGene therapyGenetic communicationGenetic expressionGenetic programmingGenomicsMicroiniectionNanobioscienceDNA computingNanobiotechnologyPhysiologyPredator prey systemsSynthetic biologySystematicsSystems biologyVegetationCropsMarine vegetationZoologyAnimalsBiomedical communicationBiomedical telemetryTelemedicineBiomedical computingBiomedical informaticsMedical expert systemsMedical information systemsElectronic medical recordsBiomedical engineeringBioimpedanceBiological techniquesBiomedical applications of radiationBiomedical electronicsBiomedical signal processingBiomedical image processingBiotechnologyCloning

.....Drug deliveryTargeted drug deliveryNeural engineeringNeural microtechnologyNeural nanotechnologyNeural prosthesisProtein engineeringTissue engineeringRegeneration engineeringBiomedical equipmentAssistive technologyAssistive devicesWheelchairsBiomedical electrodesBiomedical telemetryBiomedical transducersCathetersCybercareEndoscopesGerontechnologyHypodermic needlesImplantable biomedical devicesImplantsAuditory implantsBrainstem implantsCochlear implantsMicroelectronic implantsIntracranial pressure sensorsLithotriptorsPacemakersStethoscopeSurgical instrumentsLaparoscopesBiomedical imagingAngiocardiographyAngiographyBiomedical optical imagingCardiographyEchocardiographyElectrocardiographyPhonocardiographyDICOMEncephalographyMammographyMedical diagnostic imagingAnatomical structureMolecular imagingPhantomsBionanotechnologyBioterrorismComputational biology

......Computational biochemistryComputational biophysicsComputational systems biologyGenetic engineeringMedical servicesAssisted livingCatheterizationClinical diagnosisCybercareHealth information managementHospitalsIn vitroIn vitro fertilizationIn vivoMedical conditionsAneurysmArteriosclerosisArthritisAtrophyBlindnessCancerDeafnessDiabetesDiseasesEpilepsvHemorrhagingHypertensionHyperthermiaInfluenzaInjuriesPregnancyRetinopathySleep apneaThrombosisTumorsMedical diagnosisAutopsyBronchoscopyColonographyComputer aided diagnosisMedical signal detectionNanomedicinePlethysmographySensitivity and specificityMedical testsAmniocentesisBiopsyCancer detectionColonoscopyPregnancy testMedical treatment

.....AnesthesiaAngioplastyBrachytherapyBrain stimulationCardiologyChemotherapyClinical trialsDefibrillationDentistryElectrical stimulationElectronic medical prescriptionsEmbolizationFibrillationGastroenterologyGerontologyGynecologyHepatectomyHospitalsHyperthermiaLithotripsyMagnetic stimulationNeonatologyNeuromuscular stimulationNeutron capture therapyNoninvasive treatmentOncologyOrthopedic proceduresOrthoticsPathologyPatient rehabilitationPediatricsPharmaceuticalsSurgeryOccupational medicineProstheticsArtificial biological organsArtificial limbsProsthetic handProsthetic limbsVisual prosthesisPublic healthcareSensory aidsHearing aidsVaccinesX-raysX-ray applicationsX-ray detectionX-ray scatteringX-ray tomographyNuclear medicineSynthetic biology

Engineering managementBusinessBusiness data processingIndustrial relationsManagementAsset managementBest practicesBusiness continuityBusiness process re-engineeringCommunication system operations and managementContent managementContingency managementContractsCustomer relationship managementDecision makingEnterprise resource planningFacilities managementFinancial managementGovernmental factorsHuman resource managementInformation managementInternational collaborationKnowledge managementMarketing managementOrganizational aspectsOutsourcingProcess planningProduction managementProject managementPublic relationsQuality managementResearch and development managementResource managementRisk analysisStorage managementSupply chain managementOperations researchInventory controlVirtual enterprisesOrganizationsBNSCCompaniesGovernmentSociotechnical systemsCommercializationEconomicsCostsCost benefit analysisEconometrics

.....Economic forecastingEconomic indicatorsShare pricesElectronic commerceEnvironmental economicsCarbon taxExchange ratesFuel economyInternational tradeMacroeconomicsPrivatizationMicroeconomicsEconomies of scaleIndustrial economicsMonopolyOligopolyPower generation economicsElectricity supply industry deregulationProfitabilityStock marketsSupply and demandTrade agreementsVenture capitalVirtual enterprisesInnovation managementLegal factorsCopyright protectionSoftware protectionLawCensorshipCommercial lawConsumer protectionContract lawCriminal lawEmployment lawForensicsLaw enforcementPatent lawTrademarksLaw enforcementPatentsProduct liabilityWarrantiesSoftware protectionTrademarksMarket researchProduct developmentGraphical user interfacesAvatarsProduct customization

......Product life cycle managementPrognostics and health managementTime to marketProject engineeringSchedulingAdaptive schedulingDynamic schedulingJob shop schedulingSingle machine schedulingResearch and development managementInnovation managementResearch initiativesSoftware development managementAgile software developmentScrum (Software development)Technology management

Geoscience and remote sensingEnvironmental factorsBiosphereEcosystemsEnvironmental economicsCarbon taxEnvironmental monitoringGlobal warmingGreen productsGreen buildingsGreen cleaningPollutionAir pollutionIndustrial pollutionLand pollutionOil pollutionRadioactive pollutionThermal pollutionUrban pollutionWater pollutionGeographic information systemsGeospatial analysisGunshot detection systemsGeophysical measurementsGeodesyLevel measurementSea measurementsGeoacoustic inversionSeismic measurementsGeophysical measurement techniquesGeophysical signal processing

....GeoscienceAntarcticaSouth PoleArcticNorth PoleAtmosphereAtmospheric modelingAtmospheric wavesBiosphereContinentsAfricaAsiaAustraliaEuropeNorth AmericaSouth AmericaCyclonesHurricanesTropical cyclonesEarthEarthquakesEarthquake engineeringForestryGeoengineeringGeographyCities and townsRural areasUrban areasGeologyMineralsRocksGeophysicsEMTDCExtraterrestrial phenomenaGeodynamicsGeophysics computingMeteorologyMoistureSeismologySurface wavesWell logginglceIce shelflce surfaceIce thicknessSea iceLakesLand surfaceLeveeMeteorological factorsOceans

.....Ocean salinityOcean temperatureSea coastSea floorSea levelSea surfaceTidesRiversSedimentsSoilSoil moistureSoil propertiesSoil textureTornadoesTsunamiVolcanoesPlanetary volcanoesVolcanic activityVolcanic ashLand surface temperaturePhotometryRadarAirborne radarBistatic radarDoppler radarGround penetrating radarLaser radarMeteorological radarMillimeter wave radarMultistatic radarMIMO radarPassive radarRadar applicationsRadar countermeasuresRadar detectionRadar imagingRadar measurementsRadar polarimetryRadar remote sensingRadar trackingRadar clutterRadar cross-sectionsRadar equipmentRadar theorySpaceborne radarSpread spectrum radarSynthetic aperture radarInverse synthetic aperture radarPolarimetric synthetic aperture radarUltra wideband radar

....RadiometryMicrowave radiometryRadiometersSpectroradiometersRemote sensingHyperspectral sensorsHyperspectral imagingPassive microwave remote sensingRemote monitoringTerrain mappingDigital elevation modelsTerrestrial atmosphereCloudsGlobal warminglonosphereMagnetosphereVegetation mapping

IEEE organizational topics

IEEE activities
Awards activities
Corporate recognition awards
External awards
Honorary membership
Medals
Prize paper awards
Scholarships
Service awards
Student awards
Technical field awards
Conferences
Corporate activities
Čalendars
Ethics
Finance
Legislation
Meetings
Member relations
Membership development
Motion-planning
Planning
Public relations
Strategic planning
Technology planning
Educational activities
Accreditation
Career development
Continuing education
Curriculum development
Educational programs

.....ScholarshipsIntersociety activitiesLocal activitiesMember and Geographic ActivitiesConferencesMeetingsNominations and electionsOrganizingProfessional activitiesCareer developmentCertificationConsortiaContinuing educationEmploymentEthicsIntellectual propertyLegislationMeetingsProfessional aspectsPublic policyPublishing activitiesBooksCD-ROMsConference proceedingsIndexesStandards publicationStandards activitiesStandards developmentStandards publicationStudent activitiesTechnical activitiesConferencesMeetingsTechnical Activities Guide - TAGUnited States activitiesCareer developmentContinuing educationEmploymentEthicsIntellectual propertyLegislationPACE networkPublic policyVolunteer activitiesAudit CommitteeBoard of Directors Awards Board CommitteeCredentials CommitteeEthics CommitteeExecutive CommitteeFellow Committee

.....Life Members CommitteeMember Conduct CommitteeNominations and electionsStrategic Planning CommitteeTellers CommitteeWomen in Engineering CommitteeIEEE entitiesBoardsBoard of DirectorsEducational Activities BoardIEEE Press Editorial BoardIEEE Spectrum Editorial BoardMember and Geographic Activities BoardProceedings Editorial BoardPublications BoardStandards BoardTechnical Activities BoardThe Institute Editorial BoardUnited States Activities BoardCenter for the History of Electrical EngineeringHistoryChaptersStudent ChaptersCommitteesAwards committeesBoard committeesCommunitiesNew Technology Connections PortalOnline Communities/Technical CollaborationStandards Working GroupsCouncilsAccreditation Policy CouncilCareer Policy CouncilGeographic CouncilsIEEE Biometrics CouncilIEEE Council on Electronic Design AutomationIEEE Council on SuperconductivityIEEE Nanotechnology CouncilIEEE Sensors CouncilIEEE Systems CouncilIEEE Technology Management CouncilLifelong Learning CouncilMember Activities CouncilMetropolitan CouncilsNanotechnology Council

.....Operations CouncilOutreach CouncilProfessional Activities CouncilSystems CouncilTechnical CouncilsTechnical Field Awards CouncilTechnology Policy CouncilIEEE Computer Society PressIEEE FoundationIEEE PressRegionsChaptersRegion 1Region 10Region 2Region 3Region 4Region 5Region 6Region 7Region 8Region 9SectionsStudent ChaptersSectionsChaptersStudent ChaptersSocietiesIEEE Aerospace and Electronic Systems SocietyIEEE Antennas and Propagation SocietyIEEE Broadcast Technology SocietyIEEE Circuits and Systems SocietyIEEE Communications SocietyIEEE Components, Packaging, and Manufacturing Technology SocietyIEEE Computational Intelligence SocietyIEEE Computer SocietyIEEE Consumer Electronics SocietyIEEE Control Systems SocietyIEEE Dielectrics and Electrical Insulation SocietyIEEE Education SocietyIEEE Electromagnetic Compatibility SocietyIEEE Electron Devices SocietyIEEE Engineering in Medicine and **Biology Society**

.....IEEE Engineering Management SocietyIEEE Geoscience and Remote Sensing SocietyIEEE Industrial Electronics SocietyIEEE Industry Applications SocietyIEEE Information Theory SocietyIEEE Instrumentation and Measurement SocietyIEEE Intelligent Transportation Systems SocietyIEEE Lasers and Electro-Optics SocietyIEEE Magnetics SocietyIEEE Microwave Theory and **Techniques Society**IEEE Nuclear and Plasma Sciences SocietvIEEE Oceanic Engineering SocietyIEEE Photonics SocietyIEEE Power Electronics SocietyIEEE Power & Energy SocietyIEEE Reliability SocietyIEEE Robotics and Automation SocietyIEEE Signal Processing SocietyIEEE Society on Social Implications of TechnologyIEEE Solid-State Circuits SocietyIEEE Systems, Man, and **Cybernetics Society**IEEE Technology Management CouncilIEEE Ultrasonics, Ferroelectrics, and Frequency Control SocietyIEEE Vehicular Technology SocietyStudent ChaptersIEEE governanceBylawsConstitutionIEEE Policy and ProceduresIEEE StaffMission and VisionOrganization ChartsIEEE membersAssociate membersFellowsJoining IEEESignup web siteLife membersSenior members

.....Student membersIEEE newsChapter newsRegion newsSection newsSociety newsIEEE productsAudio tapesCatalogsEducational Activities Product CatalogIEEE catalogIEEE Electronic catalogIEEE standards catalogNew products catalogConference proceedingsEducational productsReading seriesSelf-study coursesVideosIEEE standardsIEEE 1394 StandardIEEE 802.11 StandardsIEEE 802.15 StandardsIEEE 802.16 StandardsIEEE 802.3 StandardsIEEE XploreIELMerchandiseReading seriesSelf-study coursesVideosIEEE publicationsIEEE conference proceedingsIEEE directoriesIEEE Membership DirectoryIEEE Staff DirectoryIEEE indexingAwardsBook reviewsCD-ROM reviewsEditorialsInterviewsObituariesSoftware reviewsSpecial issues and sectionsTutorialsVideo reviewsIEEE journalsIEEE Canadian Journal of Electrical and Computer Engineering

.....IEEE Communications LettersIEEE Communications Surveys & TutorialsIEEE Computer Architecture LettersIEEE Electrochemical and Solid-State LettersIEEE Electron Device LettersIEEE Embedded Systems LettersIEEE Journal of **Microelectromechanical Systems**IEEE Journal of Oceanic EngineeringIEEE Journal of Quantum ElectronicsIEEE Journal of Robotics and AutomationIEEE Journal of Selected Topics in Applied Earth Observation and Remote SensinaIEEE Journal of Selected Topics in Quantum ElectronicsIEEE Journal of Selected Topics in Signal ProcessingIEEE Journal of Solid-State CircuitsIEEE Journal of Technology Computer Aided DesignIEEE Journal on Selected Areas in CommunicationsIEEE Latin America Learning Technologies Journal [IEEE-RITA]IEEE Learning TechnologyIEEE Magnetics LettersIEEE Microwave and Guided Wave LettersIEEE/OSA Journal of Display TechnologyIEEE/OSA Journal of Lightwave TechnologyIEEE/OSA Journal of Optical Communications and NetworkingIEEE Photonics JournalIEEE Photonics Technology LettersIEEE Reviews in Biomedical EngineeringIEEE Signal Processing LettersIEEE Systems JournalProceedings of the IEEEIEEE magazinesIEEE Aerospace and Electronics Society Magazine

.....IEEE Annals of the History of ComputingIEEE Antennas and Propagation MagazineIEEE Circuits and DevicesIEEE Communications MagazineIEEE Computational IntelligenceIEEE Computational Science and EngineeringIEEE Computer Applications in PowerIEEE Computer Graphics and ApplicationsIEEE Computer MagazineIEEE ConcurrencyIEEE Control SystemsIEEE Design and Test of ComputersIEEE Electrical Insulation MagazineIEEE Engineering in Medicine and Biology MagazineIEEE Engineering Management ReviewIEEE Industrial Electronics MagazineIEEE Industry Applications MagazineIEEE Instrumentation and Measurement MagazineIEEE Intelligent Systems and their ApplicationsIEEE Intelligent Transportation Systems MagazineIEEE Internet ComputingIEEE MicroIEEE Multidisciplinary Engineering Education MagazineIEEE MultimediaIEEE Nanotechnology MagazineIEEE NetworkIEEE Personal CommunicationsIEEE PotentialsIEEE Power Engineering ReviewIEEE Robotics and Automation MagazineIEEE Signal Processing MagazineIEEE SoftwareIEEE Solid-State Circuits MagazineIEEE SpectrumIEEE Technology and Society Magazine

.....IEEE-USA Today's EngineerIEEE newslettersBroadcast Technology Society NewsletterCenter for the History of Electrical **Engineering Newsletter**Circuits and Systems Society NewsletterComponents, Packaging, and Manufacturing Technology Society NewsletterConsumer Electronics Society NewsletterEducation Society NewsletterElectromagnetic Compatibility Society NewsletterElectron Devices Society NewsletterElectronics and the Environment NewsletterEngineering Management Society NewsletterGeoscience and Remote Sensing Society NewsletterIEEE CircuitboardIEEE Looking ForwardIEEE Publications BulletinIndustrial Electronics Society NewsletterInformation Theory Society NewsletterInstrumentation and Measurement Society NewsletterLasers and Electro-Optics Society NewsletterMagnetics Society NewsletterMicrowave Theory and Techniques Society NewsletterNuclear and Plasma Sciences Society NewsletterOceanic Engineering Society NewsletterPower Electronics Society NewsletterProfessional Communication Society NewsletterReliability Society NewsletterSystems, Man and Cybernetics Society NewsletterThe InstituteThe Staff Circuit

.....Ultrasonics, Ferroelectrics, and Frequency Control Society NewsletterVehicular Technology Society NewsletterIEEE online publicationsIEEE Bibliographies On-lineIEEE CircuitboardIEEE Communications InteractiveIEEE Communications Surveys & TutorialsIEEE Distributed Systems OnlineIEEE Electrochemical and Solid-State LettersIEEE Electronic catalogIEEE Journal of Technology Computer Aided DesignIEEE Journals and Transactions **On-LINE - OpeRA**IEEE Latin America Learning Technologies Journal [IEEE-RITA]IEEE Latin America Transactions [Revista IEEE America Latina]IEEE Learning TechnologyIEEE Looking ForwardIEEE Multidisciplinary Engineering Education MagazineIEEE Network InteractiveIEEE Personal Communications InteractiveIEEE Photonics JournalIEEE Transactions on Computational Intelligence and AI in GamesIEEE Transactions on Learning **Technologies**IEEE Transactions on Network and Service ManagementIEEE Transactions on Services ComputingIEEE standard glossariesIEEE transactionsIEEE/ACM Transactions on NetworkingIEEE Biometrics CompendiumIEEE Latin America Transactions [Revista IEEE America Latina]IEEE Transactions on Aerospace and Electronic SystemsIEEE Transactions on Affective Computing

.....IEEE Transactions on Antennas and PropagationIEEE Transactions on Applied SuperconductivityIEEE Transactions on Audio. Speech, and Language ProcessingIEEE Transactions on Automatic ControlIEEE Transactions on Automation Science and EngineeringIEEE Transactions on Autonomous Mental DevelopmentIEEE Transactions on Biomedical Circuits and SystemsIEEE Transactions on Biomedical EngineeringIEEE Transactions on BroadcastingIEEE Transactions on Circuits and Systems for Video TechnologyIEEE Transactions on Circuits and Systems I: Fundamental Theory and ApplicationsIEEE Transactions on Circuits and Systems II: Analog and Digital Signal ProcessingIEEE Transactions on CommunicationsIEEE Transactions on Components. Packaging, and Manufacturing Technology Part AIEEE Transactions on Components, Packaging, and Manufacturing Technology Part BIEEE Transactions on Components, Packaging, and Manufacturing Technology Part CIEEE Transactions on Computational Intelligence and AI in GamesIEEE Transactions on Computer-Aided Design of Integrated Circuits and SystemsIEEE Transactions on ComputersIEEE Transactions on Consumer ElectronicsIEEE Transactions on Control Systems TechnologyIEEE Transactions on Dielectrics and Electrical InsulationIEEE Transactions on Education

.....IEEE Transactions on Electromagnetic CompatibilityIEEE Transactions on Electron DevicesIEEE Transactions on Energy ConversionIEEE Transactions on Engineering ManagementIEEE Transactions on Evolutionary ComputationIEEE Transactions on Fuzzy SystemsIEEE Transactions on Geoscience and Remote SensingIEEE Transactions on HapticsIEEE Transactions on Image ProcessingIEEE Transactions on Industrial ElectronicsIEEE Transactions on Industry ApplicationsIEEE Transactions on Information Forensics and SecurityIEEE Transactions on Information **Technology in Biomedicine**IEEE Transactions on Information TheoryIEEE Transactions on Instrumentation and MeasurementIEEE Transactions on Knowledge and Data EngineeringIEEE Transactions on Learning **Technologies**IEEE Transactions on MagneticsIEEE Transactions on MechatronicsIEEE Transactions on Medical ImagingIEEE Transactions on Microwave Theory and TechniquesIEEE Transactions on NanotechnologyIEEE Transactions on Network and Service ManagementIEEE Transactions on Neural NetworksIEEE Transactions on Nuclear ScienceIEEE Transactions on Pattern Analysis and Machine IntelligenceIEEE Transactions on Plasma Science

.....IEEE Transactions on Power DelivervIEEE Transactions on Power ElectronicsIEEE Transactions on Power SystemsIEEE Transactions on Professional CommunicationIEEE Transactions on Rehabilitation EngineeringIEEE Transactions on ReliabilityIEEE Transactions on RoboticsIEEE Transactions on Robotics and AutomationIEEE Transactions on Semiconductor ManufacturingIEEE Transactions on Services ComputingIEEE Transactions on Signal ProcessingIEEE Transactions on Smart GridIEEE Transactions on Software EngineeringIEEE Transactions on Speech and Audio ProcessingIEEE Transactions on Sustainable EnergyIEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and HumansIEEE Transactions on Systems, Man, and Cybernetics Part B: CyberneticsIEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and ReviewsIEEE Transactions on Ultrasonics, Ferroelectrics and Frequency ControlIEEE Transactions on Vehicular TechnologyIEEE Transactions on Very Large Scale Integration - VLSIIEEE Transactions on Visualization and Computer GraphicsIEEE Women in EngineeringNotice of ViolationIEEE servicesAsk IEEEConference managementMeeting servicesMember servicesCareer development

.....Electronic mailFinancial advantage programIEEE Bibliographies On-lineIEEE Electronic catalogJob listing serviceMembership renewalTravel servicesWeb and internet servicesSubscriptionsWeb and internet servicesElectronic mailIEEE Electronic catalogIEEE Journals and Transactions **On-LINE - OpeRA**Online bankingIEEE web sitesSociety home pagesWeb page design

Imaging

....Biomedical imagingAngiocardiographyAngiographyBiomedical optical imagingCardiographyEchocardiographyElectrocardiographyPhonocardiographyDICOMEncephalographyMammographyMedical diagnostic imagingAnatomical structureMolecular imagingPhantomsCamerasDigital camerasWebcamsFocusingGround penetrating radarHolographyImage convertersImage intensifiersImage sensorsActive pixel sensorsCCD image sensorsCharge-coupled image sensorsCMOS image sensorsInfrared image sensorsImage storage

....Infrared imagingNight visionMagnetic resonance imagingDiffusion tensor imagingMagneto electrical resistivity imaging techniqueMicroscopyAtomic force microscopyElectron microscopyPhotoelectron microscopyScanning electron microscopyTransmission electron microscopyScanning probe microscopyMicrowave imagingMotion picturesMultispectral imagingNuclear imagingEnergy resolutionOptical imagingTalbot effectThermoreflectance imagingPhotographyCinematographyDigital photographyImage forensicsPhotomicrographyRadiation imagingRadiographyDiagnostic radiographyStereo visionStereo image processingTomographyComputed tomographyElectrical capacitance tomographyPositron emission tomographyWhole-body PETReconstruction algorithmsSingle photon emission computed tomography

	Integrated circuit t
Industrial electronics	Integrated circu
Assembly systems	Logic testing
Flexible electronics	Life testing
Robotic assembly	Materials testing
Computer aided manufacturing	Accelerated agi
CADCAM	Acoustic testing
Silicon compiler	Adhesive streng
Cryogenic electronics	Bonding forces
Industrial control	Delamination
Process control	Elastic recovery

.....Predictive controlThree-term controlTwo-term controlProduction controlContinuous productionLot sizingOptimized production technologySchedulingIntegrated manufacturing systemsMachine controlMachine vector controlManufacturing automationComputer aided manufacturingCADCAMSilicon compilerComputer integrated manufacturingComputer numerical controlFlexible manufacturing systemsTestingAerospace testingAutomatic testingAutomatic test pattern generationRing generatorsBenchmark testingBuilt-in self-testCircuit testingIntegrated circuit measurementsElectronic equipment testingImmunity testingError analysisBit error rateFinite wordlength effectsError-free operationsFailure analysisEquipment failureSemiconductor device breakdownFrequency responseImpulse testingInsulator testingInsulation testing testina uit yield: ging ١g ngth

.....Nondestructive testingOptical fiber testingRemaining life assessmentRing generatorsSemiconductor device testingSoftware testingSystem testingModel checkingTest equipmentAutomatic test equipmentTest facilitiesAnechoic chambersLaboratoriesLarge Hadron ColliderOpen area test sitesTEM cells

Industry applications

....Accident preventionAccidentsAerospace accidentsElectrical accidentsIndustrial accidentsMarine accidentsRailway accidentsRoad accidentsChemical technologyChemical reactorsBioreactorsContinuous-stirred tank reactorIgnitionChemical sensorsCrystallizersDistillation equipmentFluidizationPharmaceutical technologyVitrificationCryogenicsElectrochemical devicesAmperometric sensorsBatteriesLithium batteriesBattery management systemsFuel cellsSupercapacitorsElectrochemical processesElectromechanical systemsElectromechanical devicesArmatureSAW filters

....Electrostatic devicesElectrostatic precipitatorsElectrostatic processesAerosolsElectrophotographyElectrostatic analysisElectrostatic inductionElectrostaticsElectrostatic levitationParticle chargingParticle productionSpace chargeSurface chargingTriboelectricityTriboelectricityEnginesHeat enginesSteam enginesStirling enginesInternal combustion enginesDiesel enginesIgnitionJet enginesEnvironmental managementBiodegradationBiodegradable materialsLand use planningPest controlPollution controlRecyclingRenewable energy sourcesBiomassSustainable developmentWaste managementWaste disposalWaste handlingWaste recoveryWaste reductionWater conservationDesalinationWater resourcesDesalinationReservoirsFood technologyFood preservationHigh-temperature techniquesRapid thermal processingIndustrial engineeringIndustrial communicationIndustries

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). Created by The Institute of Electrical and Electronics BY NO ND Engineers (IEEE) for the benefit of humanity. Page 33

.....Agriculture

.....Agricultural productsAquacultureFertilizersGreenhousesIrrigationArchitectureBankingBeverage industryChemical industryCoal industryCommunication industryComputer industryConstructionBuildingsGreen buildingsModular constructionPrefabricated constructionConstruction industryPrefabricated constructionDefense industryEntertainment industryGas industryManufacturing industriesAerospace industryCement industryCeramics industryClothing industryElectrical products industryElectronics industryFood industryFootwear industryFuel processing industriesGlass industryMachinery production industriesMetal product industriesPlastics industryPulp and paper industryRubber industryShipbuilding industryTextile industryToy manufacturing industryMetals industryMining industryCoal miningNatural gas industryPetroleum industryOil drillingOil refineriesWell loggingPower industryElectrical equipment industry

.....Electricity supply industryNuclear facility regulationPower system interconnectionSugar industrySugar refiningTextile technologySpinningWeavingToy industryWood industryInspectionAutomatic optical inspectionMachineryAgricultural machineryBall bearingsBeltsDrivesHydraulic drivesMotor drivesVariable speed drivesElectric machinesAC machinesAlternatorsBrushless machinesCompressorsConductorsDC machinesElectric fencesGeneratorsPermanent magnet machinesRotating machinesRotorsStatorsWashing machinesFansFurnacesBlast furnacesKilnsGearsHydraulic systemsElectrohydraulicsHydraulic equipmentHydraulic fluidsMachine componentsAir cleanersBeltsCamsEngine cylindersExhaust systemsImpellersIntake systems

.....ManifoldsMechanical splinesPistonsRotorsShaftsValvesMotorsAC motorsBrushless motorsCommutationDC motorsElectric motorsHysteresis motorsInduction motorsMicromotorsPermanent magnet motorsServomotorsTraction motorsUniversal motorsPrinting machineryPumpsFuel pumpsHeat pumpsMicropumpsTextile machinerySpinning machinesManufacturingAssemblyFittingMicroassemblyPreformsSolderingAssembly systemsFlexible electronicsRobotic assemblyEmbossingFabricationBonding processesMicrofabricationOptical device fabricationSolderingWeldingLithographyColloidal lithographyInterferometric lithographyNanolithographySoft lithographyStereolithographyX-ray lithographyManufactured productsCeramic products

.....Chemical productsConsumer productsElectrical productsFood productsFuelsGlass productsMechanical productsMetal productsPaper productsPaper pulpPlastic productsRubber productsSports equipmentTextile productsWindowsManufacturing systemsAgile manufacturingAutomobile manufactureBatch production systemsBlankingCellular manufacturingFlow production systemsFood manufacturingForgingGlass manufacturingIntegrated manufacturing systemsIntelligent manufacturing systemsJob production systemsJoining processesLayered manufacturingLean productionManufacturing processesMass productionMelt processingPulp manufacturingSheet metal processingThermoformingMass customizationTolerance analysisPackagingBaggingBottlingCanningEncapsulationLabelingMultichip modulesPlastic packagingWrappingPaper technologyProductionBall milling

.....Compression moldingEmbossingFood productsDairy productsFatsSugarGroup technologyInjection moldingMaterials processingAnnealingBleachingCastingCoatingsCuringEtchingHeat treatmentJoining processesLaminationMachiningMelt processingPlasma materials processingPressingPunchingRefiningShearingSmeltingSofteningSwagingMechanical productsAutomotive componentsAxlesBellowsBladesCouplingsFastenersFlangesGearsHosesMachine componentsMechanical guidesNeedlesOrificesPistonsSealsSpringsSteering systemsStructural shapesSuspensionsTiresVentsWheels

.....Process planningCause effect analysisProduction controlContinuous productionLot sizingOptimized production technologySchedulingProduction engineeringProduction planningProduction equipmentApplicatorsClampsCutting toolsFixturesMachine toolsMining equipmentMolding equipmentPackaging machinesPaper making machinesPolishing machinesSoldering equipmentProduction facilitiesFoundriesGreenhousesIndustrial plantsMachine shopsPaper millsProduction managementControl chartsInventory managementLead time reductionLogisticsProcess planningProduction planningProduction materialsAbrasivesAerospace materialsAutomotive materialsInhibitorsInkJoining materialsLubricantsRetardantsProduction systemsAssembly systemsExhaust systemsIntelligent manufacturing systemsLean productionManufacturing systemsSteering systemsProductivity

.....ShaftsCamshaftsSpringsSuspensionsShock absorbersTransfer moldingSafetyAerospace safetyAir safetyDomestic safetyEmergency servicesExplosion protectionHazardsBiohazardsChemical hazardsExplosionsFiresFlammabilityFloodsHazardous areasHazardous materialsToxicologyHealth and safetyOccupational healthOccupational safetyMarine safetyProduct safetyProtectionExplosion protectionLightning protectionRadiation safetySafety devicesEye protectionProtective clothingVehicle safetySecurityAccess controlAuthorizationAlarm systemsSmoke detectorsComputer securityAuthenticationComputer crimeComputer hackingFirewalls (computing)Identity management systemsInvasive softwarePermissionCryptographyCiphersEncryption

.....Public keyRandom number generationData securityCryptographyMessage authenticationDigital signaturesInformation securityIntrusion detectionPower system securityReconnaissanceTerrorismBioterrorismNational securityWatermarkingWine industry

.....Wineries

Information theory

....Audio codingBiological information theoryChannel codingBlock codesLinear codesCombined source-channel codingTurbo codesCodesBinary codesReflective binary codesConvolutional codesCyclic redundancy check codesError correction codesReed-Solomon codesParity check codesIterative decodingProduct codesBar codesSpace-time codesCommunication channelsChannel allocationChannel capacityChannel estimationChannel modelsChannel spacingChannel state informationGaussian channelsAWGN channelsMultipath channelsMultiuser channelsPartial response channelsThroughput

......Time-varying channelsDecodingMaximum likelihood decodingEncodingAudio codingChannel codingBlock codesCombined source-channel codingTurbo codesEntropy codingHuffman codingSource codingSpeech codingTranscodingError compensationGenetic communicationHamming distanceHamming weightInformation entropyMutual informationNetwork codinaRate-distortionRate distortion theoryChannel rate controlSource codingSpeech coding

Instrumentation and measurement

....Computerized instrumentationElectric variablesAdmittanceCapacitanceParasitic capacitanceQuantum capacitanceCapacitance-voltage characteristicsConductivityPhotoconductivitySemiconductivityTransconductanceCurrentBioimpedanceCurrent slumpDark currentFault currentsLeakage currentsPersistent currentsShort-circuit currentsThreshold currentCurrent-voltage characteristicsElectric potential

.....GainImpedanceImpedance matchingInductancePermittivityPiezoresistanceQ-factorResistanceElectric resistancePiezoresistanceSurface resistanceThermal resistanceViscosityVoltageBreakdown voltageDynamic voltage scalingThreshold voltageVoltage fluctuationsWiringHigh energy physics instrumentation computingLinear particle acceleratorInstrumentsCompassGoniometersMicroscopyAtomic force microscopyElectron microscopyScanning probe microscopyOscilloscopesPotentiometersPressure gaugesProbesRadiometersSpectroradiometersTelescopesTheodolitesTunersVibrometersVoltmetersWatthour metersWattmetersMeasurementAccelerometersAcoustic measurementsAntenna measurementsAnthropometryArea measurementAtmospheric measurementsAtomic measurementsBiomedical measurement

.....BiomarkersBiomedical monitoringElectroencephalographyElectromyographyElectrooculographyElectrophysiologyPhotoplethysmographyReproducibility of resultsSensitivity and specificityCalorimetryCoordinate measuring machinesDensity measurementHydrometersDistance measurementEuclidean distanceDistortion measurementTotal harmonic distortionDoppler measurementDosimetryDynamic rangeElectric variables measurementAdmittance measurementAmmetersAttenuation measurementCapacitance measurementConductivity measurementCurrent measurementDielectric measurementElectrical resistance measurementElectrostatic measurementsEnergy measurementImpedance measurementInductance measurementPartial discharge measurementPhasor measurement unitsPower measurementQ measurementTransmission line measurementsVoltage measurementElectromagnetic measurementsElectromagnetic modelingLinearityMicrowave measurementMillimeter wave measurementsParameter extractionPolarimetryRadiometrySubmillimeter wave measurementsExtraterrestrial measurementsFluid flow measurementFrequency measurement

.....Frequency-domain analysisFrequency estimationGain measurementGas chromatographyGeologic measurementsGeophysical image processingGeophysical measurementsGeodesvSea measurementsSeismic measurementsInterferometryFabry-PerotInterferometersOptical interferometryPhase shifting interferometryRadar interferometryRadio interferometrySagnac interferometersLength measurementLifetime estimationLoss measurementPacket lossMagnetic variables measurementMagnetic field measurementMagnetometersPermeability measurementMeasurement by laser beamLaser velocimetryMeasurement techniquesCalibrationDynamic equilibriumMeasurement uncertaintyMeasurement unitsNanometersMechanical variables measurementAngular velocityDisplacement measurementForce measurementMotion measurementPosition measurementRotation measurementStrain measurementStress measurementThickness measurementTorque measurementVelocity measurementVibration measurementVolume measurementWeight measurementMoisture measurementHumidity measurement

.....Noise measurementMultiple signal classificationNoise figureNoise shapingNuclear measurementsParticle trackingOptical variables measurementEllipsometryPhotometryReflection coefficientRefractive indexParticle beam measurementsParticle measurementsPerformance evaluationPhase measurementpH measurementPlasma measurementsPlethysmographyPollution measurementPressure measurementAltimetryTire pressurePulse measurementsReflectometryReproducibility of resultsScintillation countersSolid scintillation detectorsSea stateSemiconductor device measurementSensitivitySensitivity analysisShape measurementSize measurementSoftware measurementSoftware metricsSoil measurementsSpectroscopyElectrochemical impedance spectroscopyKirchhoff's LawMass spectroscopyMERISNeutron spin echoPhotoacoustic effectsResonance light scatteringThermal variables measurementTemperature measurementTime measurementClocksTime disseminationTiming

.....UHF measurementsUltrasonic variables measurementViscosityWavelength measurementWide area measurementsMonitorinaComputerized monitoringEnvironmental monitoringPatient monitoringRadiation monitoringRadiation dosageRemote monitoringSurveillanceInfrared surveillanceVideo surveillanceTestingAerospace testingAutomatic testingAutomatic test pattern generationRing generatorsBenchmark testingBuilt-in self-testCircuit testingIntegrated circuit measurementsElectronic equipment testingImmunity testingError analysisBit error rateFinite wordlength effectsError-free operationsFailure analysisEquipment failureSemiconductor device breakdownFrequency responseImpulse testingInsulator testingInsulation testingIntegrated circuit testingIntegrated circuit yieldLogic testingLife testingMaterials testingAccelerated agingAcoustic testingAdhesive strengthBonding forcesDelaminationElastic recovervNondestructive testingOptical fiber testingRemaining life assessment

.....Ring generatorsSemiconductor device testingSoftware testingSystem testingModel checkingTest equipmentAutomatic test equipmentTest facilitiesAnechoic chambersLaboratoriesLarge Hadron ColliderOpen area test sitesTEM cells

Intelligent transportation systems

....Automated highwaysGeographic information systemsGeospatial analysisGunshot detection systemsIntelligent vehiclesVehicle routingNavigationAircraft navigationCourse correctionDead reckoningInertial navigationMarine navigationRadio navigationSatellite navigation systemsGlobal Positioning SystemSatellite constellationsSonar navigationTransportationAir transportationAircraftAirportsLand transportationRail transportationRoad transportationVehiclesLand vehiclesRemotely operated vehiclesSpace vehicles

Lasers and electrooptics

....Electrooptic devicesElectrochromic devicesElectrooptic deflectorsElectrooptic modulators

....Electrooptic effectsElectrochromismKerr effectOptical bistabilityStark effectLasersAtom lasersChemical lasersDiode lasersFree electron lasersGas lasersLaser applicationsDark statesDistributed feedback devicesLaser ablationLaser beam cuttingLaser fusionLaser theoryMagnetooptic recordingLaser excitationOptical pumpingLaser modesLaser mode lockingLaser stabilityLaser transitionsPower lasersPump lasersQuantum well lasersQuantum cascade lasersRing lasersFiber lasersSemiconductor lasersLaser tuningQuantum dot lasersQuantum well lasersSemiconductor laser arraysSemiconductor optical amplifiersSurface emitting lasersSolid lasersMicrochip lasersQuantum well lasersSemiconductor lasersSurface emitting lasersSurface emitting lasersVertical cavity surface emitting lasersX-ray lasersOpticsAdaptive opticsBirefringenceBrightness

.....Brightness temperatureColorPigmentationElectron opticsExtinction coefficientsExtinction ratioFiber opticsFiber nonlinear opticsOptical fibersFluorescenceFour-wave mixingGeometrical opticsRay tracingIntegrated opticsLight sourcesElectroluminescent devicesFast lightLuminescent devicesPhosphorsSlow lightStray lightSuperluminescent diodesUltraviolet sourcesLuminescenceBioluminescenceElectroluminescenceFluorescencePhosphorescencePhotoluminescenceThermoluminescenceMicroopticsMicromirrorsNonlinear opticsFiber nonlinear opticsNonlinear optical devicesOptical mixingOptical saturationPhotorefractive effectRaman scatteringSupercontinuum generationOptical amplifiersDoped fiber amplifiersErbium-doped fiber amplifiersSemiconductor optical amplifiersOptical crosstalkOptical designOptical design techniquesOptical devicesBragg gratingsCollimatorsDisplays

.....Holographic optical componentsLensesLight deflectorsLightingLuminescent devicesMirrorsOptical arraysOptical attenuatorsOptical collimatorsOptical device fabricationOptical filtersOptical resonatorsOptical sensorsThermooptical devicesOptical distortionOptical fiber applicationsOptical fiber devicesOptical harmonic generationOptical lossesOptical microscopyOptical mixingMultiwave mixingOptical polarizationPolarization shift keyingStokes parametersOptical pulsesOptical retardersOptical saturationOptical solitonsOptical tuningParticle beam opticsAtom opticsElectron opticsStimulated emissionPhotoluminescencePhysical opticsOptical refractionOptical vorticesRay tracingStray lightUltrafast opticsWhispering gallery modesOptoelectronic devicesCharge-coupled image sensorsIntegrated optoelectronicsLight emitting diodesInorganic light emitting diodesLED lampsOrganic light emitting diodesSuperluminescent diodesPhotoconducting devices

.....ElectrophotographyPhotodetectorsPhotodiodesPhototransistorsSuperconducting photodetectorsSuperluminescent diodesPhotonicsBiophotonicsMicrowave photonicsNanophotonicsPhotochromismPhotothermal effectsSilicon photonicsSpontaneous emissionRadiative recombination

Magnetics

....BiomagneticsMagnetoencephalographyDemagnetizationGyromagnetismMagnetic analysisMagnetizationMagnetic anisotropyMagnetic domainsMagnetic domain wallsMagnetic momentsPerpendicular magnetic anisotropyMagnetic devicesAccelerator magnetsFerrite devicesCirculatorsMagnetic coresTransformer coresMagnetic headsMagnetic memoryFloppy disksHard disksMagnetic modulatorsMagnetooptic devicesMagnetoresistive devicesMagnetostrictive devicesSolenoidsTransformer coresUndulatorsMagnetic fieldsGeomagnetismMagnetic reconnectionMagnetic separationMagnetostatics

......Toroidal magnetic fieldsMagnetic fluxFlux pinningMagnetic flux densityMagnetic flux leakageMagnetic force microscopyMagnetic forcesCoercive forceMagnetic hysteresisMagnetic levitationMagnetic lossesMagnetic materialsAmorphous magnetic materialsAntiferromagnetic materialsDiamagnetic materialsFerrimagnetic filmsFerrite filmsGarnet filmsFerrimagnetic materialsFerrimagnetic filmsFerrite filmsFerritesGarnet filmsGarnetsFerrite filmsFerritesFerrite filmsGarnet filmsGarnetsGarnet filmsMagnetic filmsFerrimagnetic filmsFerrite filmsGarnet filmsMagnetic liquidsMagnetic semiconductorsMagnetic superlatticesParamagnetic materialsSoft magnetic materialsMagnetic multilayersMagnetic particlesMagnetic propertiesMagnetic sensorsSpin valvesMagnetic susceptibilityMagnetic switchingMagnetization processesMagnetization reversalSaturation magnetizationMagnetoacoustic effectsMagnetoelectric effects

.....Hall effectMagnetic tunnelingMagnetoelectronicsSpin polarized transportMagnetoresistanceAnisotropic magnetoresistanceBallistic magnetoresistanceColossal magnetoresistanceEnhanced magnetoresistanceExtraordinary magnetoresistanceGiant magnetoresistanceOrdinary magnetoresistanceTunneling magnetoresistanceMagnetomechanical effectsMagnetic field induced strainMagnetoelasticityMagnetostrictionMagnetostrictionMagnetooptic effectsFaraday effectGyrotropismMagnetsElectromagnetsSuperconducting magnetsMicromagneticsPermanent magnetsMicrowave magneticsNonlinear magneticsRemanence

Materials, elements, and compounds

....Chemical elementsBoronBoron alloysCarbonCeriumDarmstadtiumHeliumHydrogenDeuteriumIsotopesLutetiumNitrogenSilicon nitrideOxygenRoentgeniumTelluriumTitaniumTitanium alloysTitanium compounds

.....YtterbiumZirconiumCompoundsBismuth compoundsGallium compoundsAluminum gallium nitrideGallium arsenideGallium nitrideIndium gallium arsenideIndium gallium nitrideIndium compoundsIndium gallium arsenideIndium tin oxideInorganic compoundsLead compoundsOrganic compoundsCarbon compoundsOrganic semiconductorsVolatile organic compoundsSilicon compoundsSilicidesSilicon carbideSilicon nitrideMaterialsAcoustic materialsAdditivesAggregatesAmorphous materialsDiamond-like carbonGlassAuxetic materialsBiological materialsBiomedical materialsBioceramicsBiomembranesBuilding materialsAsphaltConcreteFloorsMortarTilesWindowsCeramicsPorcelainComposite materialsConducting materialsCorrosion inhibitorsCrvstalline materialsNanocrystalsSuperlatticesCrystals

.....Colloidal crystalsCrystallographyCrystal microstructureGrain boundariesGrain sizeLiquid crystalsDielectric materialsDielectric filmsDielectric liquidsElectretsEpoxy resinsHigh K dielectric materialsPiezoelectric materialsFilmsConductive filmsDielectric filmsEpitaxial layersFerrimagnetic filmsFerrite filmsGarnet filmsMagnetic filmsOptical filmsPiezoelectric filmsPlastic filmsPolymer filmsSemiconductor filmsThick filmsFluidsFluid dynamicsGasesHydraulic fluidsLiquidsViscosityHazardous materialsInorganic materialsLacquersLaminatesMagnetic materialsAmorphous magnetic materialsAntiferromagnetic materialsDiamagnetic materialsFerrimagnetic filmsFerrimagnetic materialsFerrite filmsFerritesGarnet filmsGarnetsMagnetic filmsMagnetic liquidsMagnetic semiconductors

......Magnetic superlatticesParamagnetic materialsSoft magnetic materialsMaterial propertiesCreepElasticityResilienceMediaNonhomogeneous mediaRandom mediaMesoporous materialsMetal foamMetamaterialsElectromagnetic metamaterialsOptical cloakingOptical metamaterialsNanostructured materialsNanocompositesNanoporous materialsOilsLubricating oilsVegetable oilsOptical materialsOptical cloakingOptical polymersOptical retardersOptical superlatticesPhotorefractive materialsOrganic inorganic hybrid materialsOrganic materialsPaintsPaper pulpPetrochemicalsPhase change materialsPhotoconducting materialsPlasticsEpoxy resinsFiber reinforced plasticsPlastic filmsPlastic optical fiberPolymer foamsPolymer gelsPolymersLiquid crystal polymersOptical polymersPolyethylenePolyimidesProduction materialsAbrasivesAerospace materialsAutomotive materials

.....InhibitorsInkJoining materialsLubricantsRetardantsRadioactive materialsNuclear fuelsRadioactive decayRadioactive wasteRaw materialsResinsEpoxy resinsResistsSemiconductor materialsAmorphous semiconductorsElemental semiconductorsGalliumGallium arsenideGermaniumIII-V semiconductor materialsII-VI semiconductor materialsIndium gallium arsenideIndium phosphideMagnetic semiconductorsOrganic semiconductorsSemiconductor superlatticesSiliconSilicon germaniumSubstratesWide band gap semiconductorsSheet materialsSolidsYoung's modulusSuperconducting materialsGranular superconductorsHigh-temperature superconductorsMultifilamentary superconductorsNiobium-tinType II superconductorsTextilesCottonFabricsTextile fibersWoolWaste materialsEffluentsElectronic wasteIndustrial wasteRadioactive wasteSlurriesWastewater

.....WireMaterials science and technologyAbsorptionAgingAccelerated agingChemical analysisActivation analysisChemical processesChemicalsElectronic nosespH measurementContaminationSurface contaminationDegradationFiltrationMicrofiltrationHysteresisImpuritiesSemiconductor impuritiesMaterials handlingCleaningDecontaminationFreight handlingMaterials handling equipmentRemote handlingMaterials preparationDopingFiringlon implantationLaser sinteringSputteringMaterials reliabilityMaterials testingAccelerated agingAcoustic testingAdhesive strengthBonding forcesDelaminationElastic recoveryNondestructive testingMicrostructurePeriodic structuresGratingsPhotonic crystalsPigmentationPigmentsSeparation processesFractionationParticle separatorsSurface engineeringSurfaces

.....CorrosionCorrugated surfacesRough surfacesSurface impedanceSurface morphologySurface resistanceSurface roughnessSurface soilSurface structuresSurface tensionSurface textureSurface topographySurface treatmentMaterial storageBulk storageContainersFreight containersFuel storageSecure storageStackingStorage automationWarehousingWater storageReservoirsMetalsAlloyingIntermetallicShape memory alloysAluminumAluminum alloysAluminum compoundsBariumBarium compoundsBismuthBoronBoron alloysCadmiumCadmium compoundsCalciumCalcium compoundsChromiumChromium alloysCobaltCobalt alloysCopperCopper alloysCopper compoundsDigital alloysErbiumGalliumGallium alloys

.....GermaniumGermanium alloysGoldGold alloysHafniumHafnium compoundsIndiumIronCast ironIron alloysLanthanumLanthanum compoundsLeadLead isotopesLithiumLithium compoundsMagnesiumMagnesium compoundsManganeseManganese alloysMercury (metals)MetallizationIntegrated circuit metallizationNeodymiumNeodymium alloysNeodymium compoundsNickelNickel alloysNiobiumNiobium alloysNiobium compoundsPalladiumPlatinumPlatinum alloysRare earth metalsSamariumSamarium allovsSilverSteelStrontiumStrontium compoundsTinTin alloysTin compoundsTitaniumTitanium alloysTitanium compoundsTungstenYttriumYttrium compoundsZinc

.....Zinc compounds

MathematicsAccuracyAlgebraAbstract algebraGalois fieldsBoolean algebraBoolean functionsLinear algebraLinear programmingMatricesVectorsSet theoryFuzzy setsFuzzy set theoryRough setsAlgorithmsAdaptive algorithmsAdaptation modelsAlgorithm design and analysisApproximation algorithmsBackpropagation algorithmsBasis algorithmsChange detection algorithmsClassification algorithmsClustering algorithmsCompression algorithmsDensity estimation robust algorithmDetection algorithmsDistributed algorithmsDynamic programmingFiltering algorithmsGenetic algorithmsHeuristic algorithmsInference algorithmsLeast mean square algorithmsMachine learning algorithmsMatching pursuit algorithmsMaximum likelihood detectionMLFMAMulticast algorithmsParallel algorithmsPartitioning algorithmsPrediction algorithmsProjection algorithmsPursuit algorithmsSignal processing algorithmsSoftware algorithms

.....Viterbi algorithmArithmeticDigital arithmeticFixed-point arithmeticFloating-point arithmeticAzimuthAzimuthal angleAzimuthal componentAzimuthal currentAzimuthal harmonicsAzimuthal planeBoundary value problemsBoundary conditionsUpper boundCalculusDifferential equationsDifferential algebraic equationsNavier-Stokes equationsPartial differential equationsTransfer functionsIntegral equationsProbability density functionLevel setClosed-form solutionsCombinatorial mathematicsGraph theoryBipartite graphOptimal matchingReachability analysisShortest path problemTree graphsSteiner treesComputational efficiencyConformal mappingConvergenceConvex functionsCyclic redundancy checkCyclic redundancy check codesEigenvalues and eigenfunctionsEquationsBoltzmann equationDifference equationsIntegrodifferential equationsMaxwell equationsNonlinear equationsBifurcationPolynomialsRiccati equationsEstimationEstimation errorEstimation theory

.....Cramer-Rao boundsMaximum a posteriori estimationLife estimationMaximum likelihood estimationState estimationObserversYield estimationEuclidean distanceHilbert spaceFinite difference methodsFinite element analysisFourier seriesFunctional analysisGeometryComputational geometryFractalsElliptic curvesElliptic designEllipsoidsInformation geometrySurface topographyNanotopographyGradient methodsGraph theoryBipartite graphOptimal matchingReachability analysisShortest path problemTree graphsHarmonic analysisIterative methodsExpectation-maximization algorithmsIterative algorithmsBelief propagationIterative closest point algorithmSum product algorithmKernelNull spaceLaplace equationsLatticesLattice Boltzmann methodsLimit-cyclesLinearization techniquesLinear matrix inequalitiesLinear systemsMathematical modelMathematical analysisFormal concept analysisFractional calculusModal analysisMathematical programming

....Method of momentsMinimizationMinimization methodsMode matching methodsNetwork theory (graphs)Nonlinear equationsBifurcationNonlinear systemsChaosChaotic communicationComplexity theorySpatiotemporal phenomenaNonlinear dynamical systemsNumerical analysisAdaptive mesh refinementApproximation methodsApproximation errorChebyshev approximationCurve fittingExtrapolationFunction approximationInterpolationLeast squares approximationsLinear approximationPerturbation methodsConvergence of numerical methodsFinite difference methodsFinite element analysisFinite volume methodsGradient methodsIndependent component analysisIterative methodsExpectation-maximization algorithmsIterative algorithmsMethod of momentsMode matching methodsMultigrid methodsNewton methodNumerical simulationNumerical stabilityRelaxation methodsSparse matricesSplines (mathematics)Surface fittingResponse surface methodologySymmetric matricesTransmission line matrix methodsOptimizationCost functionOptimal scheduling

.....Optimization methodsCircuit optimizationDesign optimizationGradient methodsH infinity controlMathematical programmingOptimized production technologyPareto optimizationQuadratic programmingSimulated annealingPiecewise linear techniquesPiecewise linear approximationPredator prey systemsProbabilitvAnt colony optimizationBayes methodsRecursive estimationError probabilityForecastingDemand forecastingEconomic forecastingForecast uncertaintyTechnology forecastingMemoryless systemsPairwise error probabilityPossibility theoryProbability distributionExponential distributionLog-normal distributionMaxwell-Boltzmann distributionNakagami distributionRandom variablesStatistical distributionsDistribution functionsGaussian distributionWeibull distributionUncertaintyForecast uncertaintyQuaternionsRandom processesBrownian motionRoot mean squareSequencesBinary sequencesRandom sequencesSet theoryFuzzy setsFuzzy set theoryRough setsSimulated annealingSmoothing methods

....SpiralsStatisticsAdaptive estimationAutoregressive processesBoltzmann distributionLattice Boltzmann methodsCorrelationAutocorrelationCorrelation coefficientCovariance matricesGaussian mixture modelHigher order statisticsHistogramsLeast squares methodsLeast mean squares methodsLeast squares approximationsLinear discriminant analysisMaximum likelihood estimationMean square error methodsMinimax techniquesParametric statisticsPrediction theoryRanking (statistics)Root mean squareSampling methodsCompressed sensingNonuniform samplingStatistical analysisAnalysis of varianceMode matching methodsMonte Carlo methodsParameter estimationPareto analysisPrincipal component analysisRegression analysisTime series analysisStochastic processesGaussian processesGaussian mixture modelMarkov processesMarkov random fieldsTaylor seriesTopologyTransformsDiscrete transformsDiscrete cosine transformsEmpirical mode decompositionFourier transformsDiscrete Fourier transformsFast Fourier transformsKarhunen-Loeve transforms

.....Poincare invarianceWavelet transformsBiorthogonal modulationContinuous wavelet transformsDiscrete wavelet transformsWavelet coefficientsWavelet packetsTransmission line matrix methodsUncertain systemsUtility theory

Microwave theory and techniques

....Microwave technologyBeam steeringCirculatorsMasersGyrotronsMicrowave bandsC-bandK-bandL-bandMicrowave circuitsMicrowave communicationRectennasMicrowave devicesMasersMicrowave amplifiersMicrowave filtersMicrowave transistorsMicrowave generationHigh power microwave generationMicrowave photonicsMicrowave sensorsMillimeter wave technologyMillimeter wave circuitsMillimeter wave integrated circuitsMillimeter wave communicationMillimeter wave devicesMillimeter wave transistorsMillimeter wave integrated circuitsMIMICsMillimeter wave radarSubmillimeter wave technologySubmillimeter wave circuitsSubmillimeter wave integrated circuitsSubmillimeter wave communicationSubmillimeter wave devicesSubmillimeter wave filters

......Submillimeter wave integrated circuits

Nanotechnology

....BionanotechnologyCasimir effectMolecular computingMolecular electronicsNanobioscienceDNA computingNanobiotechnologyNanoelectromechanical systemsNanoelectronicsNanofabricationNanofluidicsNanolithographyNanomaterialsNanopatterningColloidal lithographyNanophotonicsNanopositioningNanoscale devicesNanocontactsNanotube devicesNanosensorsNanostructured materialsNanocompositesNanoporous materialsNanostructuresNanoparticlesNanocrystalsNanotubesCarbon nanotubesSemiconductor nanotubesNanowiresSemiconductor nanostructuresSelf-assemblyElectrostatic self-assemblySelf-replicating machines

Nuclear and plasma sciences

....Biomedical applications of radiationColliding beam devicesColliding beam acceleratorsMuon collidersElectron emissionBallistic transportElectronic ballastsElementary particlesCharge carriersCharge carrier densityCharge carrier lifetimeCharge carrier mobility

.....Charge carrier processesHot carriersElectronsElectron sourcesQuantum wellsTrionsElementary particle exchange interactionsElementary particle vacuumlonsIonizationlon sourcesMesonsNeutrino sourcesNeutronsParticle beamsAtomic beamsElectron beamslon beamsParticle collisionsPhononsPositronsProtonsFusion power generationFusion reactorsFusion reactor designTokamaksTokamak devicesGamma-raysGamma-ray burstsGamma-ray detectionGamma-ray effectsGas discharge devicesGlow discharge devicesHigh energy physics instrumentation computingLinear particle acceleratorlon beam applicationslon implantationPlasma immersion ion implantationlon emissionNuclear electronicsNuclear imagingEnergy resolutionNuclear medicineNuclear physicsAlpha particlesBeta raysIgnitionlon sourcesIsotopes

.....Nuclear phase transformationsNuclear thermodynamicsRelativistic effectsParticle acceleratorsAccelerator magnetsColliding beam acceleratorsCyclotronsElectron acceleratorslon acceleratorsLinear acceleratorsPhoton colliderPlasma acceleratorsProton acceleratorsStorage ringsSynchrocyclotronsSynchrotronsSynchrotron radiationUndulatorsParticle beam handlingParticle beam injectionPlasmasAtmospheric-pressure plasmasPlasma applicationsPlasma devicesPlasma immersion ion implantationPlasma weldingTokamaksPlasma confinementInertial confinementMagnetic confinementPlasma diagnosticsPlasma propertiesDusty plasmasPlasma chemistryPlasma densityPlasma sheathsPlasma stabilityPlasma temperaturePlasmonsPlasma simulationPlasma sourcesPlasma transport processesRadiation effectsBiological effects of radiationGamma-ray effectslon radiation effectsNeutron radiation effectsRadiation hardening (electronics)Radiation monitoringRadiation dosageRadiation safety

....Reactor instrumentationScintillation countersSolid scintillation detectorsThermionic emission

Oceanic engineering and marine technology

Marine navigation
Marine technology
Marine equipment
Marine transportation
Marine vehicles
Underwater cables
Underwater communication
Underwater equipment
Rebreathing equipment
Underwater structures
Underwater technology
Underwater communication
Underwater equipment
Underwater structures
Oceanographic techniques
Ocean temperature
Water pollution
Marine pollution

Power electronics

Converters
AC-AC converters
DC-AC power converters
Digital-to-frequency converters
Frequency conversion
Mixers
Optical frequency conversion
Power conversion
AC-AC converters
AC-DC power converters
DC-AC power converters
DC-DC power converters
Matrix converters
Power conversion harmonics
Pulse width modulation converters
Static power converters
Wavelength converters
Current limiters
Fault current limiters
Inverters
Pulse inverters
Resonant inverters

....Phase controlPower conditioningPower smoothingPower semiconductor devicesPower transistorsPower semiconductor switchesBipolar transistorsBipolar transistorsInsulated gate bipolar transistorsKirk field collapse effectThyristorsPhotothyristorsPhotothyristorsPhotothyristorsPhotothyristorsPhotothyristors

Power engineering and energy

....Electric variables controlCurrent controlElectrical ballastsElectric current controlGain controlPower controlPower system controlBidirectional power flowLoad flow controlSCADA systemsReactive power controlVoltage controlAutomatic voltage controlEnergyEnergy barrierEnergy captureEnergy consumptionEnergy conversionBatteriesFuel cellsMotorsPhotovoltaic cellsPotential wellSolar heatingThermoelectricitvWaste heatEnergy dissipationEnergy exchangeInductive chargingEnergy harvestingEnergy managementEnergy conservationEnergy efficiencyLoad managementEnergy resources

.....FuelsGeothermal energyNuclear fuelsSolar energyWave powerWind energyWind farmsEnergy statesEffective massOrbital calculationsEnergy storageBatteriesFlywheelsFuel cellsHydrogen storageSupercapacitorsSuperconducting magnetic energy storagePower engineeringFerroresonanceHigh-voltage techniquesPower engineering computingPower system simulationPower generationAutomatic generation controlCogenerationDistributed power generationGeothermal power generationHydroelectric power generationHydroelectric-thermal power generationMicrohydro powerPicohydro powerMagnetohydrodynamic power generationNuclear power generationFission reactorsFusion power generationPower generation controlPower generation dispatchPower generation planningSolar power generationMaximum power point trackersPhotovoltaic systemsTrigenerationTurbomachineryTurbinesTurbogeneratorsWind energy generationWind energy integrationWind power generation

....Power systemsHybrid power systemsIndustrial power systemsPower distributionPower distribution faultsPower distribution linesPower gridsMicrogridsSmart gridsPower suppliesBattery chargersCharging stationsCurrent suppliesEmergency power suppliesInductive chargingIslandingPower demandPower qualityPower system restorationSwitched-mode power supplyTraction power suppliesUmbilical cablePower system analysis computingPower system dynamicsPower system economicsPower system faultsPower system harmonicsPower harmonic filtersPower system managementLoad flowPower system measurementsMeter readingPower system planningPower demandPower system protectionElectrical safetySubstation protectionSurge protectionPower system reliabilityPower system stabilityPower transmissionFlexible AC transmission systemsHVDC transmissionInductive power transmissionStatic VAr compensatorsTransmission linesPSCADPulse power systemsPulsed power suppliesReactive powerSubstations

.....Substation automationSubstation protectionTransformersCurrent transformersFlyback transformersInstrument transformersPhase transformersPower transformersPulse transformersUninterruptible power systemsWind energy integration

Product safety engineering

....Consumer protectionPower system protectionElectrical safetyFault protectionGroundingSubstation protectionSurge protectionArrestersSafetyAerospace safetyAir safetyDomestic safetyEmergency servicesExplosion protectionHazardsBiohazardsChemical hazardsExplosionsFiresFlammabilityFloodsHazardous areasHazardous materialsToxicologyHealth and safetyOccupational healthOccupational safetyMarine safetyProduct safetyProtectionExplosion protectionLightning protectionRadiation safetySafety devicesEye protectionProtective clothingVehicle safety

....Vehicle crash testing **Professional communication**CollaborationCollaborative toolsCall conferenceCollaborative softwareVideoconferencesDiscussion forumsTeamworkVirtual groupsCommunication aidsCommunication effectivenessCommunication symbolsSemioticsPragmaticsSemanticsSyntacticsContextDatabasesDatabase systemsAudio databasesDeductive databasesImage databasesIndexesMultimedia databasesObject oriented databasesQuery processingDeductive databasesDistributed databasesImage databasesImage retrievalMultimedia databasesObject oriented databasesRelational databasesSpatial databasesTransaction databasesItemsetsVisual databasesGlobal communicationCross-cultural communicationGeographic information systemsGeospatial analysisGunshot detection systemsGrammarInformation analysisIndexingInformation resourcesInformation retrieval

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). Created by The Institute of Electrical and Electronics BY NO NO Engineers (IEEE) for the benefit of humanity. Page 55

.....Blogs

.....Content-based retrievalHypertext systemsInformation filteringInformation filtersRecommender systemsInformation ratesMusic information retrievalOnline servicesSearch enginesSearch methodsKeyword searchMetasearchNearest neighbor searchesSearch problemsWeb searchSocial network servicesComputer mediated communicationFacebookLinkedInMySpaceSecond LifeTwitterYouTubeTaggingTag cloudsTaxonomyTerminologyDictionariesVideo sharingFacebookMySpaceYouTubeVocabularyWeb sitesFacebookMySpaceUniform resource locatorsWeb designYouTubeInformation scienceInformation servicesAsk IEEEDictionariesDocument deliveryAsk IEEEEncyclopediasLibrariesSoftware librariesTeletextVideotexWikipedia

....Information systemsDatabase systemsAudio databasesDeductive databasesImage databasesIndexesMultimedia databasesObject oriented databasesQuery processingData systemsData acquisitionData compressionData conversionData engineeringData handlingData processingData storage systemsData warehousesDistributed information systemsPublish-subscribeIdentity management systemsInformaticsBiomedical informaticsCognitive informaticsInformation architectureInformation managementCompetitive intelligenceDocument handlingInformation securityInformation sharingKnowledge transferInformation processingInformaticsInformation exchangeSonificationManagement information systemsPortalsMedical information systemsElectronic medical recordsInformation technologyInformation representationPrintingDigital printingTeleprintingService computingTelematicsUniversal Serial BusManualsOral communicationPublic speakingSpeech

....PlagiarismPortfoliosProfessional societiesPublic speakingRhetoricWritingAbstractsBibliographiesBiographiesAutobiographiesDictionariesDocumentationGrammarReadability metricsResumesReviewsThesauri

Reliability

Availability
Fault diagnosis
Dissolved gas analysis
Fault location
Fault tolerance
Redundancy
Fluctuations
Integrated circuit reliability
Maintenance
Maldistribution
Materials reliability
Reliability engineering
Reliability theory
Robustness
Semiconductor device reliability
Software reliability
Stability
Circuit stability
Robust stability
Stability analysis
Stability criteria
Thermal stability
Telecommunication network reliability
- - - -

	Rodot control
Resonance	Robot motion
Ferroresonance	Robot kinematics
Magnetic resonance	Motion analysis
Nuclear magnetic resonance	Robot programming
Paramagnetic resonance	Robot sensing systems
Resonance light scattering	Robot vision systems

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). Created by The Institute of Electrical and Electronics Engineers (IEEE) for the benefit of humanity. Page 57

....Stochastic resonance **Robotics and automation**AnimatronicsAutomationAutomated highwaysAutomatic generation controlAutomatic testingAutomatic test pattern generationRing generatorsBuilding automationManufacturing automationComputer aided manufacturingComputer integrated manufacturingComputer numerical controlFlexible manufacturing systemsOffice automationWorkflow management softwareStorage automationMulti-robot systemsRobotsAndroidsAquatic robotsAutomataTuring machinesCognitive roboticsComputer visionActive appearance modelFace detectionSmart camerasEducational robotsHumanoid robotsIntelligent robotsManipulatorsEnd effectorsManipulator dynamicsMicromanipulatorsMedical roboticsRehabilitation roboticsMobile robotsClimbing robotsLegged locomotionOrbital roboticsParallel robots **D** = **I** = **A** = **A** = **A** = **A**

.....Simultaneous localization and mappingTactile sensorsService robotsTeleroboticsTeleoperators

Science - general

....AstronomyAstrophysicsObservatoriesOrbits (stellar)PlanetsEarthExtrasolar planetsJupiterMarsMercury (planets)PlutoSaturnSunVenusRadio astronomySolar systemKuiper beltStellar dynamicsStellar motionBiologyBiochemistryAmino acidsBiochemical analysisPeptidesProteinsBiodiversityBiogeographyBioelectric phenomenaElectric shockBiological cellsCells (biology)Chromosome mappingFibroblastsRNAStem cellsBiological information theoryBiological processesBiological interactionsChronobiologyCircadian rhythmCoagulationSymbiosis

......Biological system modelingBiological systemsAnatomyMolecular communicationOrganismsBiology computingBiophotonicsBiophysicsAerospace biophysicsBiomagneticsCellular biophysicsMolecular biophysicsEvolution (biology)MemeticsPhylogenyGeneticsDNAGene therapyGenetic communicationGenetic expressionGenetic programmingGenomicsMicroinjectionNanobioscienceDNA computingNanobiotechnologyPhysiologyPredator prey systemsSynthetic biologySystematicsSystems biologyVegetationCropsMarine vegetationZoologyAnimalsChemistryAstrochemistryBiochemistryAmino acidsBiochemical analysisPeptidesProteinsChemical analysisActivation analysisChemical processesChemicalsElectronic nosespH measurementChemical compoundsAnti-freeze

.....EthanolMethanolInorganic chemicalsInterstellar chemistryOrganic chemicalsHydrocarbonsPhotochemistryPhotobleachingElectricityPhotoelectricityPhotovoltaic effectsPiezoelectricityPiezoelectric effectPiezoelectric polarizationPyroelectricityThermoelectricityElectrothermal effectsThermoelectric devicesTriboelectricityGeoscienceAntarcticaSouth PoleArcticNorth PoleAtmosphereAtmospheric modelingAtmospheric wavesBiosphereContinentsAfricaAsiaAustraliaEuropeNorth AmericaSouth AmericaCyclonesHurricanesTropical cyclonesEarthEarthquakesEarthquake engineeringForestryGeoengineeringGeographyCities and townsRural areasUrban areasGeologyMineralsRocksGeophysics

.....EMTDCExtraterrestrial phenomenaGeodynamicsGeophysics computingMeteorologyMoistureSeismologySurface wavesWell loggingIceIce shelflce surfaceIce thicknessSea iceLakesLand surfaceLeveeMeteorological factorsOceansOcean salinityOcean temperatureSea coastSea floorSea levelSea surfaceTidesRiversSedimentsSoilSoil moistureSoil propertiesSoil textureTornadoesTsunamiVolcanoesPlanetary volcanoesVolcanic activityVolcanic ashMetrologyPhysicsAcousticsAcoustic applicationsAcoustic devicesAcoustic emissionAcoustic noiseAcoustic propagationAcoustic pulsesAcoustic wavesAcoustooptic effectsBiomedical acousticsCepstral analysis

.....MusicNonlinear acousticsPsychoacousticsReverberationSpectral shapeUnderwater acousticsAstrophysicsBeamsAcoustic beamsLaser beamsMolecular beamsOptical beamsParticle beamsBiophysicsAerospace biophysicsBiomagneticsCellular biophysicsMolecular biophysicsDark energyEntropyFluid flowFluid dynamicsHydraulic diameterHydrologyPipelinesValvesGeophysicsEMTDCExtraterrestrial phenomenaGeodynamicsGeophysics computingMeteorologyMoistureSeismologySurface wavesWell loggingKinetic theoryKinetic energyLevitationElectrostatic levitationMagnetic levitationLorentz covarianceMechanical factorsAccelerationAerodynamicsBiomechanicsDampingDynamicsFatigueForceFriction

.....HydrodynamicsKinematicsLubricationMagnetohydrodynamicsPhotoelasticityPressure effectsShock (mechanics)StrainStressSurface cracksTorqueVibrationsVolume relaxationWorkabilityNetwork theory (graphs)OrbitsPhysics educationQuantum mechanicsDensity functional theoryLagrangian functionsProton effectsQuantum capacitanceQuantum entanglementRelativistic quantum mechanicsSchrodinger equationStationary stateTeleportationTunnelingString theoryThermal factorsTemperatureTemperature dependenceThermal conductivityThermal expansionThermal managementThermal stressesThermoelasticityThermoelectricityThermolysisThermooptic effectsThermoresistivityWavesAtmospheric wavesBerry phaseDoppler effectElectrodynamicsMagnetostatic wavesMatter wavesPlasma wavesPropagationReflectivity

.....Seismic wavesShock wavesSolitonsSurface acoustic wavesWave functionsSociologyDigital divideThermodynamicsIsobaricIsothermal processes

Sensors

....Acoustic sensorsChemical and biological sensorsBiosensorsGas detectorsAmperometric sensorsElectromechanical sensorsMicrosensorsForce sensorsInfrared sensorsIntelligent sensorsIntracranial pressure sensorslonizing radiation sensorsPosition sensitive particle detectorsRadiation detectorsBolometersGamma-ray detectorsInfrared detectorsPhotodetectorsSemiconductor radiation detectorsSilicon radiation detectorsX-ray detectorsMagnetic sensorsSpin valvesMechanical sensorsCapacitive sensorsMultimodal sensorsNanosensorsOptical sensorsOptical detectorsBar codesOptical fiber sensorsOptoelectronic and photonic sensorsSensor phenomena and characterizationSensor systems and applicationsDetectorsEnvelope detectorsSemiconductor detectorsElectric sensing devices

.....Leak detectionRadiofrequency identificationRFID tagsRobot sensing systemsRobot vision systemsSimultaneous localization and mappingTactile sensorsSensor arraysSensor fusionSensor systemsGunshot detection systemsThermal sensorsTemperature sensorsThick film sensorsThin film sensorsWearable sensors

Signal processingAcoustic signal processingActive noise reductionEcho cancellersSpeech processingHuman voiceSpeech enhancementSpeech synthesisAdaptive signal processingAdaptive filtersAdaptive signal detectionAmplifiersBroadband amplifiersCavity resonatorsLaser cavity resonatorsDifferential amplifiersDistributed amplifiersLow-noise amplifiersOperational amplifiersFeedback amplifierPower amplifiersHigh power amplifiersPredistortionPreamplifiersPulse amplifiersRadiofrequency amplifiersArray signal processingAttenuatorsOptical attenuatorsChirpConvolutionConvolvers

....DecorrelationDigital signal processingDelta modulationDelta-sigma modulationSigma-delta modulationDigital signal processing chipsDispersionChromatic dispersionOptical fiber dispersionDistortionAcoustic distortionFour-wave mixingJitterTiming jitterNonlinear distortionHarmonic distortionIntermodulation distortionPhase distortionError correctionForward error correctionFadingFrequency-selective fading channelsRayleigh channelsWeibull fading channelsFiltersActive filtersBand-pass filtersAnisotropicBragg gratingsFiber gratingsChannel bank filtersDigital filtersFinite impulse response filtersEqualizersAdaptive equalizersBlind equalizersDecision feedback equalizersFiltering theoryGabor filtersHarmonic filtersIIR filtersKalman filtersLow-pass filtersMatched filtersMicrostrip filtersNonlinear filtersParticle filtersPower filtersSpurlineResonator filtersSpatial filters

......Superconducting filtersTransversal filtersFrequency locked loopsGeophysical signal processingLimitingModulationAmplitude modulationAmplitude shift keyingQuadrature amplitude modulationChirp modulationDemodulationDigital modulationConstellation diagramPartial response signalingFrequency modulationFrequency shift keyingMagnetic modulatorsModulation codingInterleaved codesOptical modulationElectrooptic modulatorsIntensity modulationPhase modulationContinuous phase modulationDifferential phase shift keyingPhase shift keyingPulse modulationPulse width modulationPulse width modulation invertersSpace vector pulse width modulationMultidimensional signal processingVideo signal processingVideo codingVideo compressionNoise1f noiseAdditive noiseAdditive white noiseAWGNColored noiseGaussian noiseAWGNLaser noiseLaser feedbackLow-frequency noiseNoise cancellationPhase noiseSignal to noise ratioPSNRSuperconducting device noise

.....White noiseAWGNOptical signal processingLaser noiseLaser feedbackOptical wavelength conversionPhase locked loopsPulse compression methodsOptical pulse compressionPulse shaping methodsOptical pulse shapingQuantization (signal)Vector guantizationRadar signal processingRecordingAudio recordingDigital recordingDisk recordingMagnetic recordingDigital magnetic recordingHeat-assisted magnetic recordingMagnetic noiseMagnetooptic recordingMicrowave-assisted magnetic recordingPerpendicular magnetic recordingOptical recordingCD recordingVideo recordingHigh definition videoWebcamsRF signalsSignal analysisDiscrete-event systemsHarmonic analysisParameter estimationAmplitude estimationDirection-of-arrival estimationFrequency estimationMotion estimationPhase estimationTime of arrival estimationSignal mappingSpectral analysisInfrared spectraJudd-Ofelt theorySpectroradiometersSignal designSignal detectionAcoustic signal detectionSonar detection

.....Motion detectionMultiuser detectionOptical signal detectionPhase detectionPhase frequency detectorRadar detectionSignal generatorsNoise generatorsPulse generationOptical pulse generationSignal reconstructionSignal denoisingSignal resolutionDiversity receptionSignal restorationSignal samplingSignal synthesisSource separationBlind source separationSpectrogramTracking loops Social implications of technologyCultural differencesEnvironmental factorsBiosphereEcosystemsEnvironmental economicsCarbon taxEnvironmental monitoringGlobal warmingGreen productsGreen buildingsGreen cleaningPollutionAir pollutionIndustrial pollutionLand pollutionOil pollutionRadioactive pollutionThermal pollutionUrban pollutionWater pollutionEthical aspectsGlobalizationInternational relations

-Peace technology
-Philosophical considerations
-Social factors
-Demography

......Technology social factorsPrivacySustainable developmentTechnologyAppropriate technologyTechnological innovationTechnology social factorsPrivacyTechnology transferSmall business technology transfer

Solid state circuitsCircuit subsystemsCircuit theoryFET circuitsFET integrated circuitsField effect MMICMESFET integrated circuitsJFET circuitsJFET integrated circuitsMESFET circuitsMESFET integrated circuitsMODFET circuitsMODFET integrated circuitsMOSFET circuitsCMOSFET circuitsMOS integrated circuitsPower MOSFETGate leakageSolid state circuit designTransistorsField effect transistorsCNTFETsDouble-gate FETsHEMTsJFETsMESFETsMISFETsMODFETsMOSFETMOSHFETsOFETsSchottky gate field effect transistorsThin film transistorsHeterojunction bipolar transistorsDouble heterojunction bipolar transistorsMillimeter wave transistorsPhototransistors

SuperconductivityBean modelCritical current density (superconductivity)Critical current densityFlux pinningSuperconducting devicesJosephson junctionsSQUIDsSuperconducting coilsSuperconducting magnetsSuperconducting microwave devicesSuperconducting photodetectorsSuperconducting filaments and wiresSuperconducting filmsSuperconducting thin filmsSuperconducting integrated circuitsSuperconducting magnetic energy storageSuperconducting materialsGranular superconductorsHigh-temperature superconductorsYttrium barium copper oxideMultifilamentary superconductorsNiobium-tinType II superconductorsSuperconducting transition temperature Systems engineering and theoryAdaptive systemsAdaptive controlLine enhancersMulti-agent systemsVariable structure systemsHierarchical systemsMultilevel systemsModelingAnalytical modelsAtmospheric modelingBrain modelingComputational modelingComputational cultural modelingContext modelingData modelsDeformable modelsDigital elevation modelsEmulationGraphical modelsGreen's function methodsHidden Markov modelsInput variablesIntegrated circuit modeling

.....Cutoff frequencyInverse problemsDeconvolutionLoad modelingMetamodelingNumerical modelsObject oriented modelingPower system modelingLoad modelingSemiconductor device modelingSemiconductor process modelingSignal representationSimulationComputer simulationDigital simulationMedical simulationSolid modelingSystem identificationMultidimensional systemsReduced order systemsStochastic systemsSystem analysis and designAsymptotic stabilityControl system analysisState-space methodsDiakopticsDistributed processingMessage passingDistributed vision networksFault detectionFault tolerant systemsInterconnected systemsLarge-scale systemsLyapunov methodsOpen systemsOpen AccessPhysical layerPetri netsRobust controlScalabilityScattering parametersSequential analysisSequential diagnosisSoftware prototypingSystem-level designSystem performanceCooperative cachingTime factorsContinuous time systemsDiscrete-time systemsTime invariant systems

.....Time-varving systemsSystems engineering education Systems, man, and cyberneticsBehavioral scienceAnimal behaviorCognitionConsumer behaviorPsychiatryMental disordersPsychologyIndustrial psychologyMoodPsychometric testingBiological control systemsBiomarkersMolecular biomarkersComputational linguisticsSentiment analysisCyberneticsAdaptive systemsAdaptive controlLine enhancersMulti-agent systemsVariable structure systemsCognitive informaticsCognitive scienceProblem-solvingControl theoryControl nonlinearitiesObservabilityDecision theoryDecision treesEconophysicsEmergent phenomenaIntelligent controlFeedforward systemsNeurocontrollersLinear feedback control systemsFrequency locked loopsPhase locked loopsState feedbackTracking loopsErgonomicsJob designHuman factorsAffective computingAnthropomorphismIdentification of personsBiometrics (access control)

.....Gait recognitionIris recognitionFace recognitionFingerprint recognitionHandwriting recognitionForgerySpeaker recognitionSpeech recognitionAutomatic speech recognitionSpeech analysisMan machine systemsInteractive systemsNatural languagesNatural language processingMorphologySentiment analysisPervasive computingUbiquitous computingContext-aware servicesWearable computersPosthumanTeleworkingTranshumanUser interfacesAudio user interfacesBrain-computer interfacesData visualizationIsosurfacesEmotion recognitionExoskeletonsGraphical user interfacesAvatarsHuman computer interactionHuman-robot interactionSmart cards

Ultrasonics, ferroelectrics, and frequency control

....Ferroelectric materialsFerroelectric filmsRelaxor ferroelectricsFrequency controlAutomatic frequency controlTunable circuits and devicesRLC circuitsTuned circuitsTuningLaser tuningOptical tuningTuners

....PiezoelectricityPiezoelectric effectPiezoelectric polarizationPyroelectricityUltrasonic imagingUltrasonographySonogramUltrasonic transducers

Vehicular and wireless technologiesAutomotive engineeringAutomotive applicationsAutomotive electronicsPower steeringVehicle crash testingVehicle detectionVehicle drivingVehicle dynamicsVehicle safetyLand mobile radio equipmentMobile antennasNavigationAircraft navigationCourse correctionDead reckoningInertial navigationMarine navigationRadio navigationSatellite navigation systemsGlobal Positioning SystemSatellite constellationsSonar navigationPropulsionAircraft propulsionPropellersElectromagnetic launchingCoilgunsRailgunsElectrothermal launchingRocketsVehiclesLand vehiclesBicyclesElectric vehiclesRoad vehiclesRemotely operated vehiclesUnmanned aerial vehiclesSpace vehiclesSpace shuttlesWireless sensor networks

.....Body sensor networksEvent detection

