
Chapter 13
Making the system operational

Asst.Prof.Dr. Supakit Nootyaskool

Faculty of Information Technology

King Mongkut’s Institute of Technology Ladkrabang

2022.04.30

Outline

 Testing

 Deployment Activities

 Planning and Managing Implementation, Testing, and Deployment

 Putting It All Together—RMO Revisited

Objective

 Describe implementation and deployment activities

 Describe various types of software tests and explain how and why each is

used

 Explain the importance of configuration management, change management,

and source code control to the implementation, testing, and deployment of a

system

 List various approaches to data conversion and system deployment and

describe the advantages and disadvantages of each

 Describe training and user support requirements for new and operational
systems

Overview: Difficult system development

Subsequence assembly step controls in
automobile.

 Time

 Cost

 Output quality

In System software development

 Time

 Cost

 Software Quality

Complex production
Assembly production
Resource efficiently

Minimize construction time
Maximize product quality

How is different between automobile production and software production?

Writing a program to convert a distance from a mile per

second to feet per second

 Write code here !

Writing a program to convert a distance from a mile per

second to feet per second

 Which code is correct ?

Why Product Testing is Importance?

 In September 1999, the Mars Climate Orbiter

crashed into the planet instead of reaching a

safe orbit. A report by a NASA investigation

board stated that the main reason for the loss

of the spacecraft was a failure to convert

measurements of rocket thrusts from English

units to metric units in a section of ground-

based navigation related mission software.

Implementation and Deployment activities

Test types

Testing concepts

 Testing – the process of examining a component, subsystem, or system to

determine its operational characteristics and whether it contains any defects

 Test case – a formal description of a starting state, one or more events to

which the software must respond, and the expected response or ending state

 Defined based on well understood functional and non-functional requirements

 Must test all normal and exception situations

 Test data – a set of starting states and events used to test a module, group of

modules, or entire system

 The data that will be used for a test case

Unit testing

 Unit test – tests of an individual method, class, or component before it is

integrated with other software

 Driver – a method or class developed for unit testing that simulates the

behavior of a method that sends a message to the method being tested

 Stub – a method or class developed for unit testing that simulates the
behavior of a method invoked that hasn’t yet been written

FuncA {
completed code

}driver driver

FuncA{
//wait to dev code
return 5;

}
driver driver

Unit testing
Driver to test createCartItem method

Unit testing
Some stub modules used by createCartItem

Integration testing

 Integration test – tests of the behavior of a group of methods,

classes, or components

 Interface incompatibility—For example, one method passes a

parameter of the wrong data type to another method

 Parameter values—A method is passed or returns a value that was

unexpected, such as a negative number for a price.

 Run-time exceptions—A method generates an error, such as “out of

memory” or “file already in use,” due to conflicting resource needs

 Unexpected state interactions—The states of two or more objects

interact to cause complex failures, as when an OnlineCart class

method operates correctly for all possible Customer object states
except one

Integration testing

 Integration testing of object-oriented software is very complex
because an object-oriented program consists of a set of
interacting objects

 Methods can be (and usually are) called by many other methods, and
the calling methods may be distributed across many classes.

 Classes may inherit methods and state variables from other classes.

 The specific method to be called is dynamically determined at run
time based on the number and type of message parameters.

 Objects can retain internal variable values (i.e., the object state)
between calls. The response to two identical calls may be different
due to state changes that result from the first call or occur between
calls.

Usability testing

 Usability test – a test to determine whether a method, class, subsystem, or

system meets user requirements

 Many usability tests are required because they involve functional and non-

functional requirements

 Most common type evaluates functional requirements, use case by use case

 Can be completed in each iteration as use cases are implemented

 Can test ease of learning and ease of use

 Can test whether results match actual requirements

 Key type of feedback from users throughout project

System, performance, and stress testing

 System test – an integration test of an entire system or independent

subsystem

 Can be performed at the end of each iteration

 Can be performed more frequently

 Build and smoke test – a system test that is performed daily or several times a

week

 The system is completely compiled and linked (built), and a battery of tests is

executed to see whether anything malfunctions in an obvious way (“smokes”)

 Automated testing tools are used. Catches any problems that may have come up since
the last system test

New
System

Automatic
Gen. data

System, performance, and stress testing

 Performance test or stress test – an integration and usability test that

determines whether a system or subsystem can meet time-based performance

criteria

 Response time – the desired or maximum allowable time limit for software response

to a query or update

 Throughput – the desired or minimum number of queries and transactions that must
be processed per minute or hour

New
System

Send Data

Return result

rt

User acceptance testing

 User acceptance test – a system test performed to determine whether the

system fulfills user requirements

 May be performed near the end of the project (or at end of later project

iterations)

 A very formal activity in most development projects. Payments tied to passing

tests

 Details of acceptance tests are sometimes included in the request for
proposal (RFP) and procurement contract

Deployment activities

 Note system tests, stress tests, and user acceptance tests are considered
deployment

Converting and initializing data

 An operational system requires a fully populated database to support ongoing

processing

 Data needed at system startup can be obtained from these sources:

 Files or databases of a system being replaced

 Manual records

 Files or databases from other systems in the organization

 User feedback during normal system operation

Converting and Initialing data
complex data conversion example

Training users

 Training is needed for end users and system operators

 Training for end users must emphasize hands-on use for specific business

processes or functions, such as order entry, inventory control, or accounting

 Widely varying skill and experience levels call for at least some hands-on training,

including practice exercises, questions and answers, and one-on-one tutorials

 System operator training can be much less formal when the operators aren’t

end users

 Experienced computer operators and administrators can learn most or all they need
to know by self-study

Training users

Configuring the production environment

Planning and managing
Implementation, testing and deployment

 Development Order

 Input, process, output (IPO) – a development order that implements input

modules first, process modules next, and output modules last

 Top-down development – a development order that implements top-level

modules first

 Use stubs for testing

 Bottom-up development – a development order that implements low-level

detailed modules first

 Use drivers for testing

Planning and managing
Implementation, testing and deployment

 Source code control

 An automated tool for tracking source code files and controlling changes to

those files

 A programmer checks out a file in read-only mode when he or she wants to examine

the code without making changes (e.g., to examine a module’s interfaces to other

modules)

 When a programmer needs to make changes to a file, he or she checks out the file in

read/write mode

 The SCCS allows only one programmer at a time to check out a file in read/write
mode.

Source code control system (SCCS)

 Git.

 Perforce Helix Core.

 Subversion.

 ClearCase.

 Team Foundation Server.

Planning and managing
Implementation, Testing and Deployment

 Packaging, installing, and deploying components

 Issues to consider when planning

 Incurring costs of operating both systems in parallel

 Detecting and correcting errors in the new system

 Potentially disrupting the company and its IS operations

 Training personnel and familiarizing customers with new procedures

 Different approaches

 Direct deployment

 Parallel deployment

 Phased deployment

Planning and managing
Implementation, Testing and Deployment

 Direct deployment – a deployment method that installs a new system,

quickly makes it operational, and immediately turns off any overlapping

systems

 Higher risk, lower cost

Planning and managing
Implementation, Testing and Deployment

 Parallel deployment – a deployment method that operates the old and

the new systems for an extended time period

 Lower risk, higher cost

Planning and managing
Implementation, Testing and Deployment

 Phased deployment – a deployment method that installs a new system
and makes it operational in a series of steps or phases

Planning and managing
Implementation, Testing and Deployment

 Submitting Error Reports and Change Requests

 Standard reporting methods

 Review of requests by a project manager or change control committee

 For operational systems, extensive planning for design and implementation

 Implementing a Change

 Identify what parts of the system must be changed

 Secure resources (such as personnel) to implement the change

 Schedule design and implementation activities

 Develop test criteria and a testing plan for the changed system

New
System

Change

Planning and managing
Implementation, Testing and Deployment

 Change and Version Control – tools and processes handle the

complexity associated with testing and supporting a system through

multiple versions

 Alpha version – a test version that is incomplete but ready for some level of

rigorous integration or usability testing

 Beta version – a test version that is stable enough to be tested by end users

over an extended period of time

 Production version, release version, or production release – a system version

that is formally distributed to users or made operational for long-term use

 Maintenance release – a system update that provides bug fixes and small
changes to existing features

RMO CSMS system revisited

 Upgrade or Replace?

 The current infrastructure is near capacity.

 RMO expects to save money by having an external vendor host the CSMS

 Existing CSS programs and Web interfaces are a hodgepodge developed over 15

years

 Current system software is several versions out of date

 Infrastructure that supports the current CSS can be repurposed to expand SCM

capacity

 Therefore RMO decided to Replace

RMO CSMS system revisited

 Phased Deployment to Minimize Risk

 Deploy in two versions

 Database Development and Data Conversion

 New database built and data migrated before deploying version 1, in iterations

 Development Order

 Start with the higher risk Sales subsystem and customer facing Order

fulfillment subsystem

 Documentation and Training

 Spread throughout later iterations for both versions

RMO CSMS Iteration plan (part1)

Summary

 Implementation and deployment are complex processes because they consist

of so many interdependent activities

 Implementation activities include program the software, unit tests, building

test cases, and integrate and test components

 Deployment activities include perform system and stress tests, perform

acceptance tests, convert existing data, build training materials/conduct

training, configure and set up the production environment, and deploy the

solution

 Testing is a key activity of implementation and deployment and includes unit

tests, integration tests, usability tests, system/performance/stress tests, and
acceptance tests

Summary (2)

 A program development plan is a trade-off among available resources, available

time, and the desire to detect and correct errors prior to system deployment

 Configuration and change management activities track changes to models and

software through multiple system versions, which enables developers to test

and deploy a system in stages

 Versioning also improves post deployment support by enabling developers to

track problem support to specific system versions

 Source code control systems enable development teams to coordinate their
work

Summary (3)

 Three options for deployment include direct deployment, parallel deployment

and phased deployment

 Direct deployment is riskier but less expensive. Parallel deployment is less

risky but more expensive

 For moderate to large projects, a phase deployment approach makes sense to
get key parts of the system operational earlier

