The Unified Modeling Language

Asst.Prof.Dr. Supakit Nootyaskool
IT-KMITL

UML: I‘equn‘ement VS Requirements models

Design models

» ldentify
All the classes or things

Elementary business —.

process

Necessary step to carry
out a use case

Describe document the
internal workflow of each
use case

Related activity diagram
show message or data
between user and system

Track all status of all
condition requirement for
a class.

N

Customer Order

Domain model class diagram

Create
new otder

Use case diagrams

Clerk System

Enter
data

Display
order
Activity diagrams and use
case description

Clerk

System sequence diagrams

Requirements state machine
diagrams

Design models

server

Intemet g]

Application]

server

Component diagrams

Client
computer

Network
computer

Deployment diagrams

Customer

Order

name

>

orderlD

changeName()

shipOrder()

Design class diagrams

I :Controller I I :Customer
Clerk ' '
: ' ; U

Interaction diagrams (sequence

diagrams)

G

Design state machine diagrams

—
View layer ~===-==- >»| Data layer
Package diagrams

Requirements models

Customer

Order

Domain model class diagram

Clerk

Create
new order

Use case diagrams

Clerk System
Enter
data
isplay
order

Activity diagrams and use
case description

System sequence diagrams

Requirements state machine

Shipped

diagrams

Design models

server

Intemet &)

Application £

server

Component diagrams

Client
computer

Network
computer

Deployment diagrams

Customer

name

Order

changeName()

orderlD

shipOrder()

Design class diagrams

I :Controller | [:Customer l
Clerk ; '
S— ;
. =

Interaction diagrams (sequence

diagrams)

Design state machine diagrams

 —

View layer

=== >

e —

Data layer

Package diagrams

Use case diagram

Use case diagram

» The use case diagram is the UML model used to graphically
show the use cases and their relationship to user.

An Actor:

Is a person or system that derives benefit from and is external to the subject

Is depicted as either a stick figure (default) or if a non-human actor is involved, as
a rectangle with <<actor>> in it (alternative)

Is labeled with its role

Can be associated with other actors using a specialization/superclass association,
denoted by an arrow with a hollow arrowhead

Are placed outside the subject boundary

Actor/Role

<<actor==
Actor/Role

A Use Case:

Represents a major piece of system functionality
Can extend another use case

Can include another use case

Is placed inside the system boundary

Is labeled with a descriptive verb-noun phrase

A Subject Boundary:

Includes the name of the subject inside or on top

Represents the scope of the subject, e.g., a system or an individual
business process

Subject

An Association Relationship:

B Links an actor with the use case(s) with which it interacts

An Include Relationship:

B Represents the inclusion of the functionality of one use case within another
B The arrow is drawn from the base use case to the included use case

<<include>>

An Extend Relationship:

B Represents the extension of the use case to include optional behavior
B The arrow is drawn from the extension use case to the base use case

<<extend>>

A Generalization Relationship:

B Represents a specialized use case to a more generalized one
B The arrow is drawn from the specialized use case to the base use case

: Make
appointment

/’—-‘

Make payment
arrangements
Make old Make new
patient appt. patient appt.

/A

Update patient
information

Create new

patient
% Produce schedule *

* information

Management New Patient

> *
% Record Old Patient

availability

Manage
schedule

Symbols

Generalization <<include>> relationship

- {-::Im:ludE}}),
£

f
+

F
<lncludes = ¢
&

-

<<extend>> relationship

A use case diagram of the Fill shopping

Sales Subsystem
Fill Shopping Cart <<includes>> Relationships

Search for item

View product
comments and
ratings

Customer 3R

View accessory
combinations

/A

Place InStore
Hold

/A

Place Special
Hold

/A

Fill Mail Order

Maintain CD
Information

ﬁ

Maintain
Marketing Information

PlaceOrder

Checkout

,/'—Q

Maintain Order

/-~

Create New
Customer

Customer

Activity diagram

Syntax for an Activity diagram (1)

An Action:

B Is a simple, non-decomposable piece of behavior
B s labeled by its name

An Activity:

B |s used to represent a set of actions Activity
®m s labeled by its name

An Object Node:

B Is used to represent an object that is connected to a set of Object Flows Class Name I
B s labeled by its class name

A Control Flow:

L 2

B Shows the sequence of execution

An Object Flow:

® Shows the flow of an object from one activity (or action) to another activity | ——7-7 77— ———- >
(or action)

An Initial Node:

B Portrays the beginning of a set of actions or activities

B s used to stop all control flows and object flows in an activity (or action)

A Final-Activity Node: @

Syntax for an Activity diagram (1)

A Final-Flow Node:
B |s used to stop a specific control flow or object flow ®
A Decision Node: 1
B |s used to represent a test condition to ensure that the control flow or object flow
only goes down one path m
m s labeled with the decision criteria to continue down the specific path 4 Criteria] Criteria] §

A Merge Node:

B |s used to bring back together different decision paths that were created using a
decision-node

A Fork Node:

B |s used to split behavior into a set of parallel or concurrent flows of activities
(or actions)

B |s used to bring back together a set of parallel or concurrent flows of activities
(or actions)

}
7\
A Join Node: \ /
T

A Swimlane:

B |s used to break up an activity diagram into rows and columns to assign the Sebi

individual activities (or actions) to the individuals or objects that are responsible
for executing the activity (or action)

m s labeled with the name of the individual or object responsible

Introduction Activity Diagram

Initial Node Iﬁ
Visit Login-or-Register % | Boticn B
Page

Decision B

ST T T T Hode
[registeread] * [mot registered]
v h_'“"=h_| Guard {in B
- T sguare brackets)
W Wt

.l Incoming Edge B
Lagin Register 1

Qutgoing Edge B

Merge Node %
Decision
"""""""""""" Node

[logged in]

[not logged in]

Visit Logged-in

Page
Final Node H

Activity diagram: Action and Activity

[not logged in)

[lagged in]

Parallel activity: Fork/Join Node

ﬁepnr‘cer Updater E:lemrelnper

% Eeview Bug >Accept Assignme nt

W
Report Bug linfo com plete]
= Triage Bug Fix Bug
&
[info missing]
Provicde More Info > \'"f

Motify Updater
Fequest Clarification
W

>ReuiewclaﬁficatinnRequest @ [invalid] >
Eeject Bug I
Assign Bug >

Close Bu Receive Fixed
. Motification

[walid]

Use case description

Use case name:

Create customer account.

Scenario: Create online customer account.

Triggering event: New customer wants to set up account online.

Brief description: Online customer creates customer account by entering basic information
and then following up with one or more addresses and a credit or debit card.

Actors: Customer.

Related use cases:

Might be invoked by the Check out shopping cart use case.

Stakeholders:

Accounting, Marketing, Sales.

Preconditions:

Customer account subsystem must be available.
Credit/debit authorization services must be available.

Postconditions:

Customer must be created and saved.

One or more Addresses must be created and saved.
Credit/debit card information must be validated.

Account must be created and saved.

Address and Account must be associated with Customer.

Flow of activities: Actor System
1. Customer indicates desire to 1.1 System creates a new customer.
create customer account and 1.2 System prompts for customer
enters basic customer information. addresses.
2. Customer enters one or more 2.1 System creates addresses.
addresses. 2.2 System prompts for credit/debit
card.
3. Customer enters credit/debit card 3.1 System creates account.
information. 3.2 System verifies authorization
for credit/debit card.
3.3 System associates customer,
address, and account.
3.4 System returns valid customer
account details.
Exception 1.1 Basic customer data are incomplete.
conditiond 2.1 The address isn’t valid.

3.2 Credit/debit information isn't valid.

Domain model class diagram

4.3 The Domain Model Class
Diagram

» Class is category or classification used to describe a collection
of object.

Object is member belongs to a class

» Domain class is the classes that describe thing in the problem

domain.
The name of the class
custNumber
name Attributes: all objects in
billAddress ———— the class have a value for
homePhone each of these
21 officePhone

4.3 The Domain Model Class
Diagram

» Cla: n used to describe a collection
of 6 Camelback notation or

camelCase notation are
O\ concatenation words to a single word |3ss

by the first character of each word] . .
» Dor typing capitalized. t describe thing in the problem
dom

\ / The name of the class

\ ﬁjstomer

custMumber
name Attributes: all objects in
billAddress ——— the class have a value for
homePhone each of these

22 officePhone

4.3 The Domain Model Class

Diagram

» Class diagram (UML) is used to show class object for a

system.

» Domain model class diagram is one type of UML class
diagram that shows the things in the users 'problem domain.

Customer

custNumber
name
billAddress
homePhone
officePhone

places

Order Orderltem
order|D itemID
orderDate g quantity
amount __] price

consists of

4.3 The Domain Model Class
Diagram

» Class diagram (UML™ — ! 1 a
system. An order must consist | to N ltems

» Domain model class
diagram that shows the things in the users

A customer can place O to N orders

Customer Order Orderltem
custNumber orderlD itemID
name orderDate g quantity
billAddress amount __| price
homePhone consists of
officePhone

4.3.1 The Domain Model Class

Diagram Notation

Zero or one
(optional)

Zero or more
(optional)

One and only one
(mandatory)

Zero or more
alternate
(optional)

One and only one
alternate
(mandatory)

N
ST N

One or more
(mandatory)

25

4.3.1 The Domain Model Class Diagram
Example: A bank system

Customer Account Branch
custNumber {key} account ID {key} branchID {key}
fullName 1 1 accountType 0.* 1 managerName
billAddress —_| dateOpened £ branchLocation
homePhone balance mainPhone
officePhone

1
1.X
Transaction

transID {key}
transDate
transType
transAmount

26

4.3.1 The Domain Model Class Diagram
Example: A university course enrollment

Course

courseNumber
title
creditHours

1
0..*

CourseSection Student
sectionNumber studentlD
startTime 0.* 0..* | name
roomNumber major

2T

4.3.1 The Domain Model Class Diagram
Example: A university course enrollment

Course

courseNumber

title
creditHours

No grade data,
The student taking a class don’t have a grade.

1..*
CourseSection Student
sectionNumber studentID
startTime 1.* 15.50 | name

roomNumber major

4.3.1 The Domain Model Class Diagram
Example: A university course enrollment (2)

» Association class

The solution is to add a domain class represent association
between two classes.

Course

courseNumber
title
creditHours

CourseEnrollment

1 grade

0..*

CourseSection 5 Student

sectionNumber o studentiD
startTime 0::? . 0..* | name
roomNumber major

29

4.3.2 More complex issue about
classes of objects

» Generalization relationship SRS
Group similar types of things
Superclass
\ A
» Specialization relationship s
Group different types of things L) T
Specialize, A
Sport Car ’S d’fferent from —I7 Spor!sCar Sedan SportUtility
tractor and truck, is car. e %

/ | —

Subclass
30

4.3.2 More complex issue about

4

classes of obj

Transaction
transID {key}
transDate
» Abstract class is a e i Ml
class that subclass - Abstract class
can inherit from it. (italics)
;)//
) C r t IaSS . Customer Account Branch
oncrete c IS custNumber {key} accountlD {key} branchiD {key}
a class that does o bl e
have actual object. | ciioephons s
A
SavingsAccount CheckingAccount
interestRate checkStyle

31

minimumBalance

4.3.2 More complex issue about
classes of objects

» Whole part
relationship

Aggregation
Composition

32

Computer

/

Processor, Main
Memory, Keyboard, Disk
Storage, and Monitor are

parts of a computer

DiskStorage

Keyboard

4.3.3 RMO Example: Domain

Model Class Diagram (Sales
subsystem)

33

Promotion PromoOffering AccessoryPackage
season regularPrice 0.* category
year % promoPrice **/| description
description 0..
startDate
endDate
ProductComment 1.7
date Productltem
0..* ::)tr':%em 0..* 1 | gender
description
11 supplier
manufacturer Saleltem
0 i
picture quantity
Inventoryltem soldPrice
- L shipStatus
size 1 0.+ | backOrderStatus
color =
options
quantityOnHand j s InStoreSale
averageCost Cartlt
reorderQuantity 1 0. ol storelD
—_1 quantity 1 registerlD
currentPrice clerkiD
Sale
o
saleDateTime OnlineSale
1 priorityCode
S&H 4 timeOnSite
OnLineCart tax chatUse
- totalAmt
startDateTime mountainBucks
g a)) noOfitems TelephoneSale
valueOfltems i P 1
status clerkiD
—— lengthOfCall
JAN 10
l l SaleTrans
ActiveCart OnReserveCart date
elapsedTime holdForDays transactionType
amount
1 paymentMethod
Customer
name
mobilePhone
1 | homePhone 1
emailAddress
status

4.3.3 RMO Example:
Domain Model Class
Diagram (Customer
account subsystem)

34

FriendLink Sale SaleTrans
customeri saleDateTime date
customer2 priorityCode transactionType
status S&H 1..* | amount
dateLinkedUp tax paymentMethod

totalAmt
mountainBucks
1
0.) 0. CustPartnerCredit
amtBMOCredits
Customer amtPartnerCredits PromoPartner
name —~ name
mobilePhone ! N , | address
homePhone 0.. 0..* | contactPerson
emailAddress telephone
status agreementDescription
1
1.2 1 0..1 1.
To From Account
" " typeOfAccount
0.. 0.. creditCardNo
Message
0..1
date
messageText
1% 1=
Address
number
street
city
state
zipcode

Entity Relationship Diagram

4.2.1

ERD Notation

Two data entities (Customer and Order)

36

\/acustomer can place

zero or more Orders

Customer

Order

an Order must be placed
by exactly one Customer

4.2.1 ERD Notation

Exactly one (mandatory)

/ /' Zero or more (optional)
%’" al i
a
//
—+O e
\J One or more (mandatory) :

Zero or one (optional)

37

4.2.1 ERD Notation: Example

ERD with attributes shown

A customer takes many orders.
A customer don’t take an order.

Customer Order Orderltem
cust number—PK order ID-PK item ID—-PK
name order date quantity

| O < l |
bill address amount | | < price
home phone
office phone

38

4.2.1 ERD Notation: .

ERD with attributes shown

Lxample

An order has minimum one item.
An order has many items.

~

Customer

cust number—PK
name

bill address
home phone
office phone

H+—Od]

Order \

order ID-PK
order date

X

amount

39

H<

Orderltem

item ID-PK
quantity
price

4.2.1 ERD Notation: Example many

branch of bank

Customer

cust number—PK
name

bill address
home phone
office phone

Account

account ID—PK
account type
date opened
balance

Branch

branch ID-PK
manager name
location

main phone

40

Transaction

trans ID—PK
trans date
trans type
trans amount

System sequence diagram

5.3 SSD Indentifying I/0O

» System Sequence Diagram

(SSD)

Uses to describe the flow of
information into and out of

the automatic system.

42

Show the sequence message
inform diagram between an

external actor and the system.

SSD is type of Interaction
diagram

The actor
interacting with
the system

Cllerk

i/

An object
(underlined)
representing the

automated system

An input message

%3

inquireOnltem (cataloglD, prodID, size)

Sy ST

item information

|

A returned value

The object lifeline; shows

the“sequence” of messages,

top to bottom

item information:
description, price, quantity

]

\

Optional note to explain
something in a diagram

5.3 SSD Indentifying I/0O (2)

43

The actor

the system

interacting with

An object
(underlined)
representing the
automated system

An input message

Clt;:‘rk

inquireOnltem (cataloglID, prodID, size)

System

s SEEEE

item information

\

A returned value

>/

The object lifeline; shows

the“sequence” of messages,

top to bottom

item information:
description, price, quantity

]

it sl

\

Optional note to explain
something in a diagram

5.3 SSD Indentifying I/0O (3):
loop frame

Test condition for :System
repeatability
Clerk :
! (
! 1
Loop for all items J : Repeat everything
! addlitem (itemID, quantity) i in the rectangle
t 2
' I
' | /
' I
S P S I I - B -
: description, price, extendedPrice !
I
' I
: I

Loop frame is the repeating operation operating multiple
44 times between an actor and a system

Class diagram

10.4.1 Design class symbols (2)

4

entity class a design identifier for a
problem domain class (usually persistent)

control class a class that mediates
between boundary classes and entity
classes, acting as a switchboard between
the view layer and domain layer

boundary class or view class a class that
exists on a system'’s automation
boundary, such as an input window form
or Web page

data access class a class that is used to

retrieve data from and send data to a
database

46

«entity»
Customer

«control»
UseCaseHandler

«boundary»
OrderWindow

«dataAccess»
OrderDBReader

o

Customer

O

UseCaseHandler

O

OrderWindow

o

OrderDBReader

Example UML design class symbols

ATM % __}—O O

transfer funds

Account Holder user interface
3 HO O — O
Bank bank interface withdraw funds ES ks ens

<
<<boundary>> " el
<<actor>> boundary 1 <<contral>> —_rf__‘_,__
e i Actorl controller 1
entityl 4
Actorl v1

entity 2
<<boundary>> R
<<actor>> boundary 2 (:" :ID 5
b N bt M R [Finekar2: COmroten
A oundary 2 controller 2

<entity=>
entity 3

4Ref: http://lwww.cs.sjsu.edu/~pearce/modules/patterns/enterprise/ecb/ecb.htm

10.4.2
Notation for a design class

» Syntax for name, attributes, and methods

«Stereotype Name»
Class Name::Parent Class

Attribute list
visibility name:type-expression = initial-value {property}

Method list
visibility name (parameter list): return type-expression

48

10.4.2
Notation for design classes

» Attributes

Visibility—indicates (+ or -) whether an attribute can be
accessed directly by another object.

private (-) not visibility

public (+) visibility
Attribute name—Lower case camelback notation
Type expression—class, string, integer, double, date
Initial value—if applicable the default value

Property—if applicable, such as {key}
Examples:

- accountNo: String {key}
- startinglobCode: integer = Ol

49

10.4.2
Notation for design classes

» Methods

Visibility—indicates (+ or -) whether an method can be
invoked by another object.

private (-) not visibility

public (+) visibility
Method name—Lower case camelback, verb-noun

Parameters—variables passed to a method
Return type—the type of the data returned
Examples:

+setName(fName, IName) : void (void is usually let off)

+getName(): string (what is returned is a string)
-checkValidity(date) :int (assuming int is a returned code)

50

Start with domain class diagram
RMO sales subsystem

Promotion
season
year
description
startDate -
endDate PromoOffering
_.| price
______ specialPrice
e
_______ Customer
0=t accountNo {key}
Productltem SaleTrans Eﬁnﬁ?\g Addioss
productiD {key} date shippingAddress
vendor transactionType dayPhone
gender amount nightPhone
description paymentMethod
1--* 1
1
0." 0.*
Inventoryltem Sale
inventorylD {key} Saleltem 1 salelD {key}
Slzle 0.* qqantity saleDate
color — price ioritvCod
. 1 riorityCode
options / backorderStatus N ghippti}rllg&Handling
quantityOnHand 1| tax
averageCost grandTotal
reorderQuantity

51

Create first cut design class diagram

» Use case create

phone sale with
controller added

52

«controller»
SaleHandler

Customer

Sale

Saleltem

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-salelD: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

-saleltemID: int {key}
-quantity: int

-price: float
-backorderStatus: string

PromoOffering Productltem Inventoryltem
-price: float -productlD: string {key} -inventorylD: string {key}
-specialPrice: float -vendor: string -size: string

-gender: string -color: string

-description: string

-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

Ftey Design class diagram
Customer Sale Saleltem

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-salelD: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

-saleltemID: int {key}
-quantity: int

-price: float
-backorderStatus: string

v

Promotion I I
Domain class diagram
season
year
description
startDate -
endDate PromoOffering
_.| price
_.-=="" | specialPrice
Lo Loac
______ Customer
[accountNo {key}
name
Productitem SaleTrans billingAddress
productiD {key} date shippingAddress
vendor transactionType dayPhone
gender amount nightPhone
description paymentMethod
L 1
1
0" 0.
Inventoryltem Sale
ipventowID {key} Saleltem 1 salelD {key}
3|z|e 0.+ | Quantity saleDate
color price riorityCode
options / backorderStatus N Zhippti);]g&Handling
quantityOnHand | -
averageCost grandTotal
reorderQuantity

53

PromoOffering Productitem Inventoryltem
-price: float -productlD: string {key} -inventorylD: string {key}
-specialPrice: float -vendor: string -size: string

-gender: string -color: string

-description: string

-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

Sequence diagram

11.2.1 Sequence diagram:
Example, two-level details design

55

1

I

1
createN

View layer class

:CustomerForm

Domain layer classes

1
ewCustomer (name, phones, email)

Activation lifeline >

«controller»
:CustomerHandler

createNewCustomer (name, phones, email

vj_____

Two ways to return data:

as a value or a return message [‘

enterAddress (address)

enterCreditCard (cc-info)

L%"’

(custlD, name, phones, email)

enterAddress (address)

|
|

} - -1

(updated address)

enterCreditCard (cc-info)

C:=createNewCustomer (name, phones, email)

aC:Customer

enterAddress (address)

(updated cc-info)

enterCreditCard (cc-info)

SQL Insert
]

Note of expanded sequence diagram

» This is a two layer architecture, as the domain class
Customer knows about the database and executes SQL
statements for data access

» Three layer design would add a data access class to
handle the database resulting in higher cohesiveness and
loose coupling

» Note :

CustomerForm is an object of the CustomerForm class,

:CustomerHandler is an object of the CustomerHandler class
playing the role of a controller stereotype (both underlined
because they are objects)

aC:Customer is an object of the Customer class known by
reference variable named aC

56

11.2.2 First-cut sequence diagram:
Example create customer account Use case

Design class diagram:

Domain model: (Chap4
(p4) Create customer account use case

Customer account system

«controller» Customer
FriendLink Sale SaleTrans CustomerHandler —
-accountNo:string {key}
customer1 saleDateTime date -name:string
customer2 priorityCode transactionType -mobilePhone:string
status S&H 1 1..* | amount -homePhone:string
dateLinkedUp tax paymentMethod -emailAddress:string
totalAmt -status:string
mountainBucks

0 *l |0 N CustPartnerCredit
amtRMOCredits
Customer amtPartnerCredits PromoPartner
name name Account Address
mobilePhone . 0.* address -accountNo:string -accountNo:string
homePhone 0.. - _| contactPerson y .
emailAddress — telephone -typeOfAccount:string -typeOfAddress:string
status agreementDescrintion -cardNumber:string -street1:string
9 P -expireDate:date -street2:string
-comment:string -city:string
1. 1 0.1 1.4 -state-province:string
-country:string
To From Account -postalCode:string
. . typeOfAccount
0. 0.. creditCardNo
Message
15 |
date D .
messageText .
U 1.*
Address) «controller= :Customer :Address :Account
number Clerk :CustomerHandler
street ' '
city | createNewCustomer |
state I (name, phones, email) 1
zipcode : :
I I
1 1
1 1

57

enterAddress (address)

enterCreditCard (cc-info)

11.2.2 First-cut sequence diagram:
Example create customer account Use case

«controller»
:CustomerHandler

» Add messages and

activation to complete [cenevcisoner

(name, phones, email)

C o I Ia b O rati o n aC:=createNewCustomer (name, phones, email)

(CustID, name, phones, email) aC:Customer
< 7777777777

SQL Insert

» This is just the domain

1
I a e r enterAddress (address)
enterAddress (address) -
y (updaied address) aAdd:=createAddress (address)

e]

aAdd:Address

» These domain classes

}-—-+

L SAL Insert

handle data access, so irOriiCent o) | emercrosons 9 | nremonc s
T T T T :Account

this is a two layer ! T |

architecture | ; Lsm Inser

58

11.2.3 Guideline and Assumptions for
first-cut sequence diagram development

4

Perfect technology assumption—First encountered for use
cases.We don’t include messages such as the user having to
log on.

Perfect memory assumption—WVe have assumed that the
necessary objects were in memory and available for the use
case. In multilayer design to follow, we do include the steps
necessary to create objects in memory.

Perfect solution assumption—The first-cut sequence diagram
assumes no exception conditions.

Separation of responsibilities—Design principle that
recommends segregating classes into separate components

based on the primary focus, such as user interface, domain, and
data access

59

11.2.4 Developing a multilayer design

Problem in domain classes

» Persistent classes is the problem on complex business logic that some
class contains the mechanism for storing and retrieving data from a
database.

Solving

» Apply separate layer is the separate connection to database and SQL
from the domain classes.

The Multilayer design has three-layers design use concept of
separation responsibility

|) View layer
Get input data or commands
Show output or command responding

2) Domain layer
3) Data access layer

60

Figl11-8
irst-cut sequence diagram for the create customer account use case

«controller»
:CustomerHandler

The SQL statement

: is contained in the :
! ! domain layer
L

createNewCustomer

(name, phones, email) — pI g 1' 13

\

aC:createNewCustomer (nam, s, email Sequence diagram for fill shopping cart
(CustID, name, phones, email) aC:Custon :| U S C aS e WI t h d at a aC C eS S I ay er

-~ — — — — — — — —]

T SQL Insert
1 —>
enterAddress (address) I.Camjandler M':ﬁomer :
I
L 1

T
Clerk

enterAddress (EMTESS) aAdd:=createAddress (addrel l :PromoOfferingDA “ :ProductitemDA !!tlnventorvltemDA!

I ~readPO ()
1 | H
price := g;e(P'rice () .

Data access layer
:CustomerDA

:CartltemDA
:OnlineCartDA

;

T
(updated address) Custlomer 1 1 i T
e —— i : 5 |:Prom00ﬁermg| 'l :Productitem || I Jnventoryltem I !
aAdd:Addi i 7 findCustomer (acctNo) T ; T 1 T !

T] aC:= read;Cust (acctNo) : | : :

1
: additemToCart . ! 1 : 1 1
. (promoNo, pro~’ 1 : | : :
- E ize, color, 1

enterCreditCard (cc-info) i i . |°' ’ [firstitem]createCart() |:OnlineCanDA| ! : ! :

- enterCreditCard (cc-info) [gacc:—createAccount (cc-in T ; I : .

(updated cc-info) | : N : :

. e aCrt:OnlineCart |1 i 1 | |

aAcc:Accr ; . : | 1

! 1 1

T — 1 1 1 :CartltemDA 1

- | additemToCart | | createCartitem - ! : :

1 | (promoNo, prodiD, size, color, qty) (promohfo, prodID, size, color, gty) 1 | |

1 - ; v] 1 1

. . | ===

| ! findPromo (promolD, prodiD) g i

1 I

1 1

1 1

1 I

1 I

1
1

findProdlitem (prodID)
1
I | 1

1
readProd ()

description := getDesc () \:
i [
1

1
I
R .
1 findinvitem (prodiD, size, color)
- | | .E] readinv
] 1
L]
!
]
1

)

status := updateQty (qty)

(description, price, extendedPrice) (descnpéon._prf.iteﬂdedpﬂce) .

1
- 1
1 s = — — —— 1 saveCartitem (aCl) !
(description, price, extendedPrice) 1 saveCart (aCrt) | :
E | P I
== 1 — 1 iy i
61 1 1 % | , L :

. Figll-14
11.2.4 DeVGlOplng a Partial sequence diagram for fill

multilayer deSign: :Searc;;r;i:r\:\;ﬁindow 3Pe?,5)Fai;grcart SRy “CartHandler
View layer Cusere

| addlte- _, rt I
L~ No, prodID, size, color, qty)

addltemToCart

I
|
I
|
I
|
I
I
I
|
|
; I
(promoNe, prot.}iID, size, color, gty — n
(promoNo, prodID, size, color, qty)

wyiswn» .

|
I
: :CustloginWindow Etinfo := requestCustiD |)
|
[

View layer

s iews
DisplayltemWindow

(deseription, price, extendedPrice)

(promoNo, prodlD, size, color, gty)

(description, price, extendedPrice)

“VigW=

:Displayltem+AccessWindow

L
=< I
I I
1 |
| |
| |
| |
I I
| «ViEWs |
! YiewAccessWindow I
I I
I I
| addAccessoryToCart | I
: (promoNo, prodID, size, color, qty) :
L I
| |
I ; I
| aviews |
| :AddAccessWindow |
i addAccessoryToCart |
| (promoNo, prodlD, size, color, qfy |
| addAccessoryToCart |
| —
I
I
I
I
I
|
I
I
I
|
I
I
I

62

e == |
(description, price, extendedPrice)

-

Communication diagram

11.3 Designing communication diagrams

» Shows the same information as a sequence diagram

» Symbols used in a communication diagram:

An actor who sends
the initial message

Ve

1: firstMessage ()

E—

An object that
receives a message
and sends other
messages

/

4: finalResponse ()

Actor

h

:Object

2: secondMessage ()
—

A link between
symbols that send or
receive messages

b
3: returnMessage ()

A message arrow and
descriptive name

:Object2

[tr%?l/false condition] sequence-number; return-value := message-name(parameter-list)

11.3 Designing communication diagrams
Example Fill Shopping Cart use case

» This diagram should math the domain layer sequence

diagram shown earlier.

The method
UpdateQty gets
number gty and
after running it

» Many people prefer them for brainstorming

1.2.1:createCartltem

(promoNo, prodID, return status
1.2:addltemToCart size, color, qty)
(promoNo, prodID, S
size, color, gty) :OnlineCart :Cartltem
1:addltemToCart
(promoNo, prodID, /’
size, color, qty) 1.2.1.1:price := getPrice () 1.2.1.3:status := updateQty (qty)

——= | .cartHandler T 1.1.1:aCrt := createCart (
Customer \ /1.2.1.2:descrip1ic-n = getDesc ()
[firstitem]1.1:createCart () :Customer :PromoOffering :Productltem :Inventoryltem

65

