
The Unified Modeling Language

Asst.Prof.Dr. Supakit Nootyaskool

IT-KMITL

UML: requirement VS.
Design models

 Identify

 All the classes or things

 Elementary business

process

 Necessary step to carry

out a use case

 Describe document the

internal workflow of each

use case

 Related activity diagram

show message or data

between user and system

 Track all status of all

condition requirement for

a class.

 2

3

Use case diagram

Use case diagram

 The use case diagram is the UML model used to graphically
show the use cases and their relationship to user.

Symbols

Generalization <<include>> relationship

<<extend>> relationship

A use case diagram of the Fill shopping

Activity diagram

Syntax for an Activity diagram (1)

Syntax for an Activity diagram (1)

Introduction Activity Diagram

Activity diagram: Action and Activity

Parallel activity: Fork/Join Node

Use case description

19

Domain model class diagram

4.3 The Domain Model Class
Diagram

 Class is category or classification used to describe a collection

of object.

 Object is member belongs to a class

 Domain class is the classes that describe thing in the problem

domain.

21

4.3 The Domain Model Class
Diagram

 Class is category or classification used to describe a collection

of object.

 Object is member belongs to a class

 Domain class is the classes that describe thing in the problem

domain.

Camelback notation or
camelCase notation are

concatenation words to a single word
by the first character of each word

typing capitalized.

22

4.3 The Domain Model Class
Diagram

 Class diagram (UML) is used to show class object for a

system.

 Domain model class diagram is one type of UML class

diagram that shows the things in the users 'problem domain.

23

4.3 The Domain Model Class
Diagram

 Class diagram (UML) is used to show class object for a

system.

 Domain model class diagram is one type of UML class

diagram that shows the things in the users 'problem domain.

A customer can place 0 to N orders

An order must consist 1 to N Items

24

4.3.1 The Domain Model Class
Diagram Notation

25

4.3.1 The Domain Model Class Diagram
Example: A bank system

26

4.3.1 The Domain Model Class Diagram
Example: A university course enrollment

27

4.3.1 The Domain Model Class Diagram
Example: A university course enrollment

15..50

1..*

1..*

No grade data,
The student taking a class don’t have a grade.

28

4.3.1 The Domain Model Class Diagram
Example: A university course enrollment (2)

 Association class

 The solution is to add a domain class represent association
between two classes.

29

4.3.2 More complex issue about
classes of objects

 Generalization relationship

 Group similar types of things

 Specialization relationship
 Group different types of things

Specialize,
Sport car is different from
tractor and truck, is car.

Superclass

Subclass
30

4.3.2 More complex issue about
classes of objects

 Abstract class is a

class that subclass

can inherit from it.

 Concrete class is

a class that does
have actual object.

Abstract class
(italics)

31

4.3.2 More complex issue about
classes of objects

 Whole part

relationship

 Aggregation

 Composition

32

4.3.3 RMO Example: Domain

Model Class Diagram (Sales
subsystem)

33

4.3.3 RMO Example:

Domain Model Class

Diagram (Customer
account subsystem)

34

Entity Relationship Diagram

4.2.1 ERD Notation

Two data entities (Customer and Order)

36

4.2.1 ERD Notation

37

4.2.1 ERD Notation: Example

 ERD with attributes shown

A customer takes many orders.
A customer don’t take an order.

38

4.2.1 ERD Notation: Example

 ERD with attributes shown

An order has minimum one item.
An order has many items.

39

4.2.1 ERD Notation: Example many
branch of bank

40

System sequence diagram

5.3 SSD Indentifying I/O

 System Sequence Diagram

(SSD)

 Uses to describe the flow of

information into and out of

the automatic system.

 Show the sequence message

inform diagram between an

external actor and the system.

 SSD is type of Interaction
diagram

42

5.3 SSD Indentifying I/O (2)

43

5.3 SSD Indentifying I/O (3):
loop frame

Loop frame is the repeating operation operating multiple
times between an actor and a system 44

Class diagram

10.4.1 Design class symbols (2)

 entity class a design identifier for a
problem domain class (usually persistent)

 control class a class that mediates
between boundary classes and entity
classes, acting as a switchboard between
the view layer and domain layer

 boundary class or view class a class that
exists on a system’s automation
boundary, such as an input window form
or Web page

 data access class a class that is used to
retrieve data from and send data to a
database

46

Example UML design class symbols

Ref: http://www.cs.sjsu.edu/~pearce/modules/patterns/enterprise/ecb/ecb.htm

ATM

47

10.4.2
Notation for a design class

 Syntax for name, attributes, and methods

48

10.4.2
Notation for design classes

 Attributes

 Visibility—indicates (+ or -) whether an attribute can be
accessed directly by another object.

 private (-) not visibility

 public (+) visibility

 Attribute name—Lower case camelback notation

 Type expression—class, string, integer, double, date

 Initial value—if applicable the default value

 Property—if applicable, such as {key}

 Examples:

 - accountNo: String {key}

 - startingJobCode: integer = 01

49

10.4.2
Notation for design classes

 Methods

 Visibility—indicates (+ or -) whether an method can be
invoked by another object.

 private (-) not visibility

 public (+) visibility

 Method name—Lower case camelback, verb-noun

 Parameters—variables passed to a method

 Return type—the type of the data returned

 Examples:

 +setName(fName, lName) : void (void is usually let off)

 +getName(): string (what is returned is a string)

 -checkValidity(date) : int (assuming int is a returned code)

50

Start with domain class diagram
RMO sales subsystem

51

Create first cut design class diagram

 Use case create

phone sale with
controller added

52

Domain class diagram

Design class diagram

53

Sequence diagram

11.2.1 Sequence diagram:
Example, two-level details design

55

Note of expanded sequence diagram

 This is a two layer architecture, as the domain class
Customer knows about the database and executes SQL
statements for data access

 Three layer design would add a data access class to
handle the database resulting in higher cohesiveness and
loose coupling

 Note :

 CustomerForm is an object of the CustomerForm class,

 :CustomerHandler is an object of the CustomerHandler class
playing the role of a controller stereotype (both underlined
because they are objects)

 aC:Customer is an object of the Customer class known by
reference variable named aC

56

11.2.2 First-cut sequence diagram:
Example create customer account Use case

Domain model: (Chap4)
Customer account system

Design class diagram:
Create customer account use case

SSD:

57

 Add messages and

activation to complete

collaboration

 This is just the domain

layer

 These domain classes

handle data access, so

this is a two layer
architecture

11.2.2 First-cut sequence diagram:
Example create customer account Use case

58

11.2.3 Guideline and Assumptions for
first-cut sequence diagram development

 Perfect technology assumption—First encountered for use
cases. We don’t include messages such as the user having to
log on.

 Perfect memory assumption—We have assumed that the
necessary objects were in memory and available for the use
case. In multilayer design to follow, we do include the steps
necessary to create objects in memory.

 Perfect solution assumption—The first-cut sequence diagram
assumes no exception conditions.

 Separation of responsibilities—Design principle that
recommends segregating classes into separate components
based on the primary focus, such as user interface, domain, and
data access

59

11.2.4 Developing a multilayer design
Problem in domain classes

 Persistent classes is the problem on complex business logic that some
class contains the mechanism for storing and retrieving data from a
database.

Solving

 Apply separate layer is the separate connection to database and SQL
from the domain classes.

The Multilayer design has three-layers design use concept of
separation responsibility

 1) View layer
 Get input data or commands

 Show output or command responding

 2) Domain layer

 3) Data access layer

60

Fig11-8
First-cut sequence diagram for the create customer account use case

The SQL statement
is contained in the

domain layer
Fig11-13
Sequence diagram for fill shopping cart
use case with data access layer

Data access layer
:CustomerDA
:CartItemDA

:OnlineCartDA

61

11.2.4 Developing a

multilayer design:
View layer

View layer

Fig11-14
Partial sequence diagram for fill
shopping cart use case with
view layer

62

Communication diagram

11.3 Designing communication diagrams

 Shows the same information as a sequence diagram

 Symbols used in a communication diagram:

[true/false condition] sequence-number; return-value := message-name(parameter-list)
64

11.3 Designing communication diagrams
Example Fill Shopping Cart use case

 This diagram should math the domain layer sequence

diagram shown earlier.

 Many people prefer them for brainstorming The method
UpdateQty gets
number qty and
after running it
return status

65

