Chapter 13
Making the system operational

Asst.Prof.Dr. Supakit Nootyaskool
Faculty of Information Technology

King Mongkut’s Institute of Technology Ladkrabang

1 April 2019

Outline

» Testing
» Deployment Activities

» Planning and Managing Implementation, Testing, and
Deployment

» Putting It All Together—RMO Revisited

Objective

» Describe implementation and deployment activities

» Describe various types of software tests and explain how
and why each is used

» Explain the importance of configuration management,
change management, and source code control to the
implementation, testing, and deployment of a system

» List various approaches to data conversion and system
deployment and describe the advantages and
disadvantages of each

» Describe training and user support requirements for new
and operational systems

Overview: Difficult system development

Complex production
Assembly production
Resource efficiently
Minimize construction time
Maximize product quality

Subsequence assembly step In System software
controls in automobile. development

» Time » Time

» Cost » Cost

» Output quality » Software Quality

4sHow is different between automobile production and software production??

Writing a program to convert a distance
from a mile per second to feet per second

» Write code here!

Metric to Imperial Conversion chart

Convert To Multiply by:
Kilometers Miles 0.62
Kilometers Feet 3280.8
Meters Feet 3.28
Centimeters Inches 0.39
Millimeters Inches 0.039

Writing a program to convert a distance
from a mile per second to feet per second

» Which code is correct ?

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

'

#include <stdio.h>

{

{

=double MileToFeet(double m)

double f;
f=m* .62 * 3280.8;
return f;

=int main(void)

printf(" 1 mile = %f", MileToFeet(1.0@));
//getchar();
return e;

#include <stdio.h>

~double MileToFeet(double m)

double f;
f=m/ ©0.62 * 3280.8;
return f;

main(void)
printf(" 1 mile = %f", MileToFeet(1.09));

//getchar();
return ©;

Metric to Imperial Conversion chart

Convert
Kilometers
Kilometers
Meters
Centimeters

Millimeters

To
Miles
Feet
Feet
Inches

Inches

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

#include <stdio.h>

~double MileToFeet(double m)

{

'}

{

double f;
f=m/ ©.62 / 3280.8;
return f;

=int main(void)

printf(" 1 mile = %f", MileToFeet(1.00));
//getchar();
return ©;

Multiply by:
062

3280.8

328

0.39

0.039

Why Product Testing is Importance?

Mars Climate Orbiter

» In September, 1999, the Mars Climate
Orbiter crashed into the planet instead'
of reaching a safe orbit. A report by a
NASA investigation board stated that
the main reason for the loss of the
spacecraft was a failure to convert e -
measurements of rocket thrusts from weeme e

o o o o R . Operator NASA / JPL
English units to metric units in a SECtion cosearin 1sseorans
. o SATCAT no. 25571
Of ground'based na.VIgatlon relatEd Website mars.jpl.nasa.gov/msp98
/orbiter/ &
m|SS|On SOftware, Mission duration 286 days

Mission failure

Implementation and Deployment activities

Implementation activities]
Core Iterations
Program the software. processes 1 2 3 4 5 6
Unit test the software. Identify problem and obtain : i | I |
& SRy S] S cnes. approval. ‘i‘l-: : i
Integrate and test components. Plan and monitor the project. : : : : :
| | | | |
I‘l.;.___
Deployment activities Discover and understand details. [! : i
——/ | I | P
I i bt -
Perform system and stress tests. Design system components. 1 | | | |
Perform user acoepiance fests. | PR
Convert existing data. A Build, test, and integrate system | | | | :
Build training materials and conduct training. components. I I I I i‘
Configure and set up production environment. Complete system tests and deploy | | : | |
Bomiy e wotion soluion. L e o M

Test types

Unit testing

Implementation

Software component that doesn’t correctly
perform its function when tested in isolation—for
example, a component for calculating sales tax
that consistently computes sales tax incorrectly
for one or more localities

Integration testing

Implementation

Software component that performs correctly in
isolation but incorrectly when tested in
combination with other components—for
example, order entry and shipping cost
calculation components that pass unit testing but
fail when tested together due to conversion
errors as data are passed from one component
to the other

Usability testing

Implementation

Software that works but fails to satisfy one or
more user requirements related to function or
ease of use—for example, a user-interface
component that forces a user to follow a
needlessly complex procedure to complete a
common and simple task

System and stress testing

Deployment

System or subsystem that doesn’t correctly
perform its function or fails to meet a
nonfunctional requirement under normal
operating conditions—for example, an order
retrieval function that displays a result in two
seconds when tested in isolation with a dummy
database but requires 30 seconds when tested
with other functions using a live database

Testing concepts

4

Testing — the process of examining a component,
subsystem, or system to determine its operational
characteristics and whether it contains any defects

Test case — a formal description of a starting state, one or
more events to which the software must respond, and the
expected response or ending state

Defined based on well understood functional and non-
functional requirements

Must test all normal and exception situations
Test data — a set of starting states and events used to test

a module, group of modules, or entire system
The data that will be used for a test case

10

Unit testing

» Unit test — tests of an individual method, class, or
component before it is integrated with other software

» Driver —a method or class developed for unit testing that
simulates the behavior of a method that sends a message

to the method being tested

» Stub — a method or class developed for unit testing that
simulates the behavior of a method invoked that hasn’t

yet been written T
u/?\fvait to dev code
return 5;
Y

FuncA {
completed code
}

11

Unit testing
Driver to test createCartltem method

12

main()

// driver method to test CartItem::createCartItem()
// declare input parameters and values

int promoID = 23;
int prodID = 1244;
String size = “large”;
String color = “red”;
int quantity = 1;

// perform test

cartItem cartItem = new cartItem();
cartItem.createcartItem(promoID,prodID,size,color,quantity) ;

// display results

System.out.println(“price=" + cartItem.getPricel());
System.out.println(“description=" + cartItem.getDescription();
System.out.println(“status=" + cartItem.getStatus());

} // end main()

Unit testing
Some stub modules used by createCartltem

float getPrice()

{

// stub method for CatalogProduct::getPrice()

return(24.95) ;
} // end getPrice()

String getDescription()

{

// stub method for Product::getDescription()

return(*mens khaki slacks”) ;
} // end getDescription()

String updateQty(int decrement)

{

// stub method for InventoryItem::updateQty()

return(“0OK") ;

P } // end updateQty ()

Integration testing

» Integration test — tests of the behavior of a group of methods,
classes, or components

Interface incompatibility—For example, one method passes a
parameter of the wrong data type to another method

Parameter values—A method is passed or returns a value that was
unexpected, such as a negative number for a price.

Run-time exceptions—A method generates an error, such as “out of
memory” or “file already in use,” due to conflicting resource needs

Unexpected state interactions—The states of two or more objects
interact to cause complex failures, as when an OnlineCart class

method operates correctly for all possible Customer object states
14 €xcept one

Integration testing

» Integration testing of object-oriented software is very complex
because an object-oriented program consists of a set of
interacting objects

15

Methods can be (and usually are) called by many other methods, and
the calling methods may be distributed across many classes.

Classes may inherit methods and state variables from other classes.

The specific method to be called is dynamically determined at run
time based on the number and type of message parameters.

Obijects can retain internal variable values (i.e., the object state)
between calls. The response to two identical calls may be different
due to state changes that result from the first call or occur between
calls.

Usability testing

» Usability test — a test to determine whether a method,
class, subsystem, or system meets user requirements

» Many usability tests are required because they involve
functional and non-functional requirements

» Most common type evaluates functional requirements,
use case by use case

Can be completed in each iteration as use cases are
implemented

Can test ease of learning and ease of use

Can test whether results match actual requirements

Key type of feedback from users throughout project

16

System, performance, and stress testing

» System test — an integration test of an entire system or
independent subsystem

» Can be performed at the end of each iteration

» Can be performed more frequently

» Build and smoke test — a system test that is performed
daily or several times a week
The system is completely compiled and linked (built), and a

battery of tests is executed to see whether anything
malfunctions in an obvious way (“smokes”)

Automated testing tools are used. Catches any problems that
may have come up since the last system test

Automatic _'
17 Gen.data & y

System, performance, and stress testing

» Performance test or stress test — an integration and
usability test that determines whether a system or
subsystem can meet time-based performance criteria

Response time — the desired or maximum allowable time limit
for software response to a query or update

rt

@i

Throughput — the desired or minimum number of queries and
transactions that must be processed per minute or hour

18

User acceptance testing

» User acceptance test — a system test performed to
determine whether the system fulfills user requirements

» May be performed near the end of the project (or at end
of later project iterations)

» A very formal activity in most development projects.
Payments tied to passing tests

» Details of acceptance tests are sometimes included in the
request for proposal (RFP) and procurement contract

19

Deployment activities

» Note system tests, stress tests, and user acceptance tests
are considered deployment

Core lterations
processes 1 5 3 4 5

Identify problem and obtain
approval.

Plan and monitor the project.

Deployment activities Discover and understand details.
F'erk:ll'l'n system al'ld stress tests. Design System compon ents.
Perform user acceptance tests.
Convert existing data. \ Build, test, and integrate system

Build training materials and conduct training. \33\ components.

: i AN
Configure and set up production environment. \] Complete system tests and deploy
Deploy the solution. solution.

20

Converting and initializing data

» An operational system requires a fully populated database
to support ongoing processing

» Data needed at system startup can be obtained from
these sources:

Files or databases of a system being replaced
Manual records

Files or databases from other systems in the organization
User feedback during normal system operation

21

Converting and Initialing data
complex data conversion example

old Copy and
A convert data

DBMS
——— import
utility
Y A
> D
DBMS DBMS
Related
export Temporary ; N
subsystem i import ew
database utility data store utility database

22

Training users

» Training is needed for end users and system operators

» Training for end users must emphasize hands-on use for
specific business processes or functions, such as order
entry, inventory control, or accounting

Widely varying skill and experience levels call for at least some

hands-on training, including practice exercises, questions and
answers, and one-on-one tutorials

» System operator training can be much less formal when
the operators aren’t end users

Experienced computer operators and administrators can learn
most or all they need to know by self-study

23

Training users

Creating records or transactions Starting or stopping the system
Modifying database contents Querying system status
Generating reports Backing up data to archive
Querying database Recovering data from archive
Importing or exporting data Installing or upgrading software

Configuring the production environment

‘ ‘ Router and ‘ i

Firewall

Web/application Database
servers server

Additional or redundant [

servers in the cloud DNS, DHCP, and
Active Directory servers |

» 25

Planning and managing
Implementation, testing and deployment

» Development Order

» Input, process, output (IPO) — a development order that
implements input modules first, process modules next,
and output modules last

nnnnnnnnnn

» Top-down development —a development order that

implements top-level modules first v
Use stubs for testing ::'__-

» Bottom-up development — a development order that
implements low-level detailed modules first
Use drivers for testing

26

Planning and managing
Implementation, testing and deployment

» Source code control

» An automated tool for tracking source code files and
controlling changes to those files
A programmer checks out a file in read-only mode when he or

she wants to examine the code without making changes (e.g.,
to examine a module’s interfaces to other modules)

When a programmer needs to make changes to a file, he or
she checks out the file in read/write mode

The SCCS allows only one programmer at a time to check out
a file in read/write mode.

27

Source code control system (SCCS
ol

Source Control Explorer X

= @B X | @ 5005 9| 22+ 29|08 - | Workspace: |WINXBSRVR 264

Sourcs location: I T $RMO_CSS/RMO_CSSRMO_CSS

uCN|OS iy

12.0|d%3 JPAIRE e

Folders x | Llocal Path: C:\Users\Burd'ProjectsRMO CSS'\RMO CSS\RMO CSS\RMO CSS

MJ win2k8srvr2x64\DefaultCollection | Name = | Pending Change |User l Latest I Last Check-in
-y RMO_CSS [@res Yes 7/1/2011 10:55:57 AM
ﬁ’—*{_j BuildPrecessTemplates QﬂchildFrm.cpp edit Jackson Yes 7/1/2011 11:15:20 AM
=& RMD_CSS 0] childFm.h edit Jackson Yes 7/1/2011 11:15:20 AM
EHM“ G+ MainFrm. cpp edit Satzinger No 7/1/2011 11:24:02 AM
- res 0] MainFm.h edit Satringer No 7/1/2011 11:24:02 AM
| ReadMe.txt Yes 7/1/2011 10:55:57 AM
m] Resource.h lock, edit Satzinger Yes 7/12011 10:55:57 AM
c_ﬁRMO_CSS.:pp lock, edit Satzinger Yes 7/1/2011 10:55:57 AM
[n] RMO_CSS A Yes 7/1/2011 10:55:57 AM
@RMO_CSSJC Yes 7/1/2011 10:55:57 AM
mRMO_CSS.vcxproj Yes 7/1/2011 10:55:57 AM
ZARMO_CSS vexproj. filters Yes 7/1/2011 10:55:57 AM
¥ RMO_CSS.vexproi. vspsce Yes 7/1/2011 10:55:57 AM
CﬂRMO_CSSDoc.q:p i Yes 7/1/2011 10:55:57 AM
f l__] RMO_CSSDoc.h i Yes 7/1/2011 10:55:57 AM
CHRMO_CSSView.cpp Yes 7/1/2011 11:19:01AM
(8] RMO_CSSView.h Yes 7/1/2011 11:19:01AM
¢ stdafx.cop Yes 7/1/2011 10:55:57 AM
0] stdafxh Yes 7/1/2011 10:55:57 AM
] targetver.h Yes 7/1/2011 10:55:57 AM
(&8 UserImages.bmp Yes 7/1/2011 10:55:57 AM

<

X0gIo0] X

>
o
[}
S
m
5
a
7]
&8
©“
1]
e
5
2
9
®
=+
o
3
7]
w
i}
=2
=
(1]

2.

1210[dx 3 Wi

28

Planning and managing
Implementation, Testing and Deployment

» Packaging, installing, and deploying components
Issues to consider when planning

Incurring costs of operating both systems in parallel

Detecting and correcting errors in the new system
Potentially disrupting the company and its IS operations

Training personnel and familiarizing customers with new
procedures

Different approaches
Direct deployment

Parallel deployment
Phased deployment

29

Planning and managing
Implementation, Testing and Deployment

» Direct deployment — a deployment method that
installs a new system, quickly makes it operational,
and immediately turns off any overlapping systems

Higher risk, lower cost

Old system in operation >

b
Y ‘

New system E Time
deployed and Old system

configured terminated

30

Planning and managing
Implementation, Testing and Deployment

» Parallel deployment —a deployment method that
operates the old and the new systems for an
extended time period

Lower risk, higher cost

Old system in operation >‘:

Deployedand __
configured

Parallel operation
31 and testing

Planning and managing
Implementation, Testing and Deployment

» Phased deployment —a deployment method that

installs a new system and makes it operational in a
series of steps or phases

:: i
0Old system A in operation q

Phase 1
deployed

—

Old system B in operation

1
1
i
4
i
] i
Phase 2 E —
deployed :
i ' 1
; :
: i
H
iPhase3 ____
E deployed
!
:ha_se L 1 Phase 3 parallel
egins i operation and testing
operation ! ,

Phase 2 parallel
32 operation and testing

Planning and managing
Implementation, Testing and Deployment

» Submitting Error Reports and Change Requests

» Implementing a Change -

33

Standard reporting methods

Review of requests by a project manager or change control
committee

For operational systems, extensive planning for design and
implementation

>

~ Change

|dentify what parts of the system must be changed

Secure resources (such as personnel) to implement the change

Schedule design and implementation activities

Develop test criteria and a testing plan for the changed system

Planning and managing
Implementation, Testing and Deployment

» Change and Version Control — tools and processes
handle the complexity associated with testing and
supporting a system through multiple versions

34

Alpha version — a test version that is incomplete but
ready for some level of rigorous integration or usability
testing

Beta version — a test version that is stable enough to be
tested by end users over an extended period of time

Production version, release version, or production release
— a system version that is formally distributed to users or
made operational for long-term use

Maintenance release — a system update that provides bug
fixes and small changes to existing features

RMO CSMS system revisited
» Upgrade or Replace!?

The current infrastructure is near capacity.

RMO expects to save money by having an external vendor
host the CSMS

Existing CSS programs and Web interfaces are a hodgepodge
developed over |5 years

Current system software is several versions out of date

Infrastructure that supports the current CSS can be
repurposed to expand SCM capacity

» Therefore RMO decided to Replace

35

RMO CSMS system revisited

» Phased Deployment to Minimize Risk

Deploy in two versions

» Database Development and Data Conversion

New database built and data migrated before deploying
version |, in iterations

» Development Order

Start with the higher risk Sales subsystem and customer
facing Order fulfillment subsystem

» Documentation and Training
Spread throughout later iterations for both versions

36

RMO CSMS Iteration plan (partl)

Define business models and development/deployment environment. Define essential use cases and
rough class diagram. Storyboard sales processing. Finalize deployment environment. Select and
acquire network components, system software, hardware, and development tools. Create a CSS
database copy with minimal data content as a starting point for CSMS database. Construct a simple
prototype for adding a customer order (no database updates| and perform usability testing.

Define class, use case, sequence diagrams, and programs, concentrating on the key use cases
(Search for item, Fill shopping cart, Check out shopping cart, Look up customer, and Create customer
account]. Deploy infrastructure components, including operating systems, Web/application servers,
and DBMS by the middle of the iteration. Update database schema based on newly defined or revised
classes and associations. Perform usability, unit, and integration testing to validate database design,
customer/sales function set, and user interfaces.

Loop through iteration 2 use cases again and make all changes determined at the end of the previous
iteration. Expand requirements and design to cover additional sales use cases and essential custome
account and order-fulfillment use cases. Perform usability, unit, and integration testing.

-

Loop through iteration 3 use cases again and make all changes determined at the end of the previous
iteration. Expand requirements and design to cover remaining Marketing subsystem use cases for
products and promotions. Develop customer-oriented online help for all functions implemented in
previous iterations. Prepare training materials and conduct training for phone and retail stores sales
personnel. Finalize the new database and prepare it for data migration. Develop data migration
[import] procedures. Test and refine data migration procedures by importing all data from the CSS
database.

Loop through iteration 4 use cases again and make all changes determined at the end of the previous
iteration. Continue training for phone and retail stores sales personnel. Conduct usability tests with a
large number of actual or simulated customers. Make any needed changes to user interfaces,
including online help. Conduct performance and stress testing and make any needed changes.
Create a copy of the CSMS deployment environment at the Park City data center for use as a test
system for version 2.0 development. Conduct use acceptance testing. Import all CSS database
changes since the last import. Place version 1.0 into production.

Monitor system performance and user comments. Develop a change list and classify them as "ASAP”
or “version 2.0." Implement ASAP changes. Expand requirements and design to cover essential use
cases from the Reporting subsystem and those related to social networking. Migrate database
updates from CSMS to CSS database twice per day. If no problems are encountered with CSMS,
discontinue data migration and old system operation at the end of this iteration.

Loop through iteration 6 use cases again and make all changes determined at the end of the previous
iteration. Expand requirements and design to cover all remaining use cases. Update database design
as needed to support version 2.0 use cases. Program iteration 7 and use cases and conduct unit and
integration testing.

Develop customer-oriented online help for all functions implemented in iterations 6 and 7. Prepare
training materials and conduct training for sales, marketing, and management personnel. Conduct
usability tests with a large number of actual or simulated customers. Make any needed changes to
user interfaces, including online help. Update the production database with any structural changes
in the test database.

Continue training for sales, marketing, and management personnel. Conduct performance and stress
testing and make any needed changes. Conduct use acceptance testing. Place version 2.0 into
production.

Summary

)

Implementation and deployment are complex processes
because they consist of so many interdependent activities

Implementation activities include program the software, unit
tests, building test cases, and integrate and test components

Deployment activities include perform system and stress tests,
perform acceptance tests, convert existing data, build training
materials/conduct training, configure and set up the production
environment, and deploy the solution

Testing is a key activity of implementation and deployment and

includes unit tests, integration tests, usability tests,
system/performance/stress tests, and acceptance tests

39

Summary (2)

» A program development plan is a trade-off among
available resources, available time, and the desire to
detect and correct errors prior to system deployment

» Configuration and change management activities track
changes to models and software through multiple system
versions, which enables developers to test and deploy a
system in stages

» Versioning also improves post deployment support by
enabling developers to track problem support to specific
system versions

» Source code control systems enable development teams
to coordinate their work

40

Summary (3)

» Three options for deployment include direct deployment,
parallel deployment and phased deployment

» Direct deployment is riskier but less expensive. Parallel
deployment is less risky but more expensive

» For moderate to large projects, a phase deployment

approach makes sense to get key parts of the system
operational earlier

41

