INTRODUCTION TO
SYSTEMS ANALY SIS AND

DESIGN:
AN AGILE, ITERATIVE APPROACH

SATZINGER | JACKSON | BURD

CHAPTER 13

Making the System
Operational

Chapter 13

Introduction to Systems
Analysis and Design:

An Agile, Iteractive Approach
6th Ed

Satzinger, Jackson & Burd

Chapter 13 Outline :

e Testing
e Deployment Activities

e Planning and Managing Implementation,
Testing, and Deployment

e Putting It All Together—RMO Revisited

Introduction to Systems Analysis and Design, 6th Edition 3

Learning Objectives

Describe implementation and deployment activities

Describe various types of software tests and explain
now and why each is used

Explain the importance of configuration management,
change management, and source code control to the
implementation, testing, and deployment of a system

List various approaches to data conversion and
system deployment and describe the advantages and

disadvantages of each

e Describe training and user support requirements for
new and operational systems

Introduction to Systems Analysis and Design, 6th Edition

Overview -

e Up to this point, the text has covered the first
four of the core development processes in the
SDLC

e This chapter covers the last 2 processes—
Implementation activities and Deployment
activities

e Implementation includes programming and
testing activities. Deployment includes system
tests, converting data, training, setting up the
production environment, and deploying the
solution

Introduction to Systems Analysis and Design, 6th Edition

Implementation and Deployment

Activities

Implementation activities

Program the software.

Unit test the software.

|dentify and build test cases.
Integrate and test components.

Deployment activities

Core
processes

lterations

3

|

Perform system and stress tests.

Perform user acceptance tests.

Convert existing data.

Build training materials and conduct training.
Configure and set up production environment.
Deploy the solution.

Introduction to Systems Analysis and Design, 6th Edition

|dentify problem and obtain
approval.

Plan and monitor the project.
Discover and understand details.
Design system components.
Build, test, and integrate system

components.

Complete system tests and deploy
solution.

Unit testing Implementation | Software component that doesn't correctly

perform its function when tested in isolation—for

T t example, a component for calculating sales tax
es that consistently computes sales tax incorrectly

for one or more localities

T es Integration testing Implementation | Software component that performs correctly in

isolation but incorrectly when tested in
combination with other components—for
example, order entry and shipping cost
calculation components that pass unit testing but
fail when tested together due to conversion
errors as data are passed from one component
to the other

Usability testing Implermnentation | Software that works but fails to satisfy one or
more user requirements related to function or
ease of use—for example, a user-interface
component that forces a user to follow a
needlessly complex procedure to complete a
common and simple task

System and stress testing | Deployment System or subsystem that doesn’t correctly
perform its function or fails to meet a
nonfunctional requirement under normal
operating conditions—for example, an order
retrieval function that displays a result in two
seconds when tested in isolation with a dummy
database but requires 30 seconds when tested
with other functions using a live database

Introduction to Systems Analysis and Design, 6th Edition 7

Testing Concepts :

e Testing — the process of examining a component,
subsystem, or system to determine its operationa
characteristics and whether it contains any defects

e Test case — a formal description of a starting state, one
or more events to which the software must respond,
and the expected response or ending state

Defined based on well understood functional and non-
functional requirements

Must test all normal and exception situations

e Test data — a set of starting states and events used to
test a module, group of modules, or entire system

The data that will be used for a test case

Introduction to Systems Analysis and Design, 6th Edition 8

Unit Testing 2

e Unit test — tests of an individual method, class,
or component before it is integrated with other
software

e Driver — a method or class developed for unit
testing that simulates the behavior of a method
that sends a message to the method being
tested

e Stub — a method or class developed for unit
testing that simulates the behavior of a method
invoked that hasn'’t yet been written

Introduction to Systems Analysis and Design, 6th Edition 9

Unit Testing sels

Driver to test createCartitem method oo

main ()

{

// driver method to test CartItem::createCartItem()
// declare input parameters and values

int promoID = 23;
int prodID = 1244;
String size = "“large”;
String color "red”;
int quantity 1;

// perform test

cartItem cartItem = new cartItem() ;
cartItem.createcartItem(promeID, prodID,size, color,gquantity) ;

// display results

System.out.println(“price=" + cartItem.getPricel)});
System.out.println(“description=" + cartItem.getDescription|) ;
System.out.println("status=" + cartItem.getStatus());

} // end maini()

Introduction to Systems Analysis and Design, 6th Edition 10

Unit Testing

Some stub modules used by createCartitem

float getPrice()

{

// stub method for CatalogProduct::getPrice()

return(24.95) ;
} // end getPrice()

String getDescription()

{

// stub method for Product::getDescription()

return (*mens khaki slacks”) :
} // end getDescription()

String updateQty(int decrement)

{

// stub method for InventoryItem::updateQty()

return(“0K") ;
} // end updateQty ()

Introduction to Systems Analysis and Design, 6th Edition

11

Integration Testing S

e Integration test — tests of the behavior of a group of
methods, classes, or components

Interface incompatibility—For example, one method passes a
parameter of the wrong data type to another method

Parameter values—A method is passed or returns a value that
was unexpected, such as a negative number for a price.

Run-time exceptions—A method generates an error, such as
“out of memory” or “file already in use,” due to conflicting
resource needs

Unexpected state interactions—The states of two or more
objects interact to cause complex failures, as when an
OnlineCart class method operates correctly for all possible
Customer object states except one

Introduction to Systems Analysis and Design, 6th Edition 12

Integration Testing

e Integration testing of object-oriented software is v

ery

complex because an object-oriented program con
of a set of interacting objects

Methods can be (and usually are) called by many other

sists

methods, and the calling methods may be distributed across

many classes.

Classes may inherit methods and state variables from other

classes.

The specific method to be called is dynamically determined at

run time based on the number and type of message
parameters.

Objects can retain internal variable values (i.e., the object
state) between calls. The response to two identical calls may
be different due to state changes that result from the first call

or occur between calls.

Introduction to Systems Analysis and Design, 6th Edition

13

Usability Testing :

e Usability test — a test to determine whether a method,
class, subsystem, or system meets user requirements

e Many usabillity tests are required because they involve
functional and non-functional requirements

e Most common type evaluates functional requirements,
use case by use case

Can be completed in each iteration as use cases are
Implemented

Can test ease of learning and ease of use
Can test whether results match actual requirements
Key type of feedback from users throughout project

Introduction to Systems Analysis and Design, 6th Edition 14

System, Performance, and Stress | ::
Testing

e System test — an integration test of an entire
system or independent subsystem
Can be performed at the end of each iteration
Can be performed more frequently

Build and smoke test — a system test that is performed
daily or several times a week

The system is completely compiled and linked (built), and
a battery of tests is executed to see whether anything
malfunctions in an obvious way (“smokes”)

Automated testing tools are used. Catches any problems
that may have come up since the last system test

Introduction to Systems Analysis and Design, 6th Edition 15

System, Performance, and Stress | ::
Testing

e Performance test or stress test — an integration
and usabillity test that determines whether a
system or subsystem can meet time-based
performance criteria

Response time — the desired or maximum allowable time
limit for software response to a query or update

Throughput — the desired or minimum number of queries
and transactions that must be processed per minute or
hour

Introduction to Systems Analysis and Design, 6th Edition 16

User Acceptance Testing :

e User acceptance test — a system test performed
to determine whether the system fulfills user
requirements

e May be performed near the end of the project (or
at end of later project iterations)

e A very formal activity in most development
projects. Payments tied to passing tests

e Details of acceptance tests are sometimes
iIncluded in the request for proposal (RFP) and
procurement contract

Introduction to Systems Analysis and Design, 6th Edition 17

0000
m mgm o000
Deployment Activities
| X J
o
Note system tests, stress tests, and user acceptance tests are
considered deployment
Core lterations
processes 3 A - 6
|dentify problem and obtain I I : I I
approval P
Plan and monitor the project. : : : : :
_—
Deployment activities Discover and understand details. : : : : :
| | [| |
| | | | |
Perform system and stress tests. Design system components. I I | | |
Perform user acceptance tests. I I } I I
Convert existing data. Build, test, and integrate system | | : | |
Build training materials and conduct training. \ components. : : : : :
. = = o
Configure and s:lat up production environment. \ Complete system tests and deploy I I : I I
Deploy the solution. solution. | | ! | |
18

Introduction to Systems Analysis and Design, 6th Edition

Converting and Initializing Data

e An operational system requires a fully populated
database to support ongoing processing

e Data needed at system startup can be obtained
from these sources:
Files or databases of a system being replaced
Manual records

Files or databases from other systems in the
organization

User feedback during normal system operation

Introduction to Systems Analysis and Design, 6th Edition 19

Old
database

Copy and
convert data

Converting and Initializing Data
Complex data conversion example

Related
subsystem
database

Paper

records

New
database

DBMS

import
utility

DBMS DBMS
export Temporary import
utility data store utility

Manual

data entry
Optical
character Temporary CE:VF;}'H&;;&
recognition data store

Introduction to Systems Analysis and Design, 6th Edition

20

Training Users 2

e Training is needed for end users and system
operators

e Training for end users must emphasize hands-on
use for specific business processes or functions,
such as order entry, inventory control, or accounting

Widely varying skill and experience levels call for at least
some hands-on training, including practice exercises,
guestions and answers, and one-on-one tutorials
e System operator training can be much less formal
when the operators aren’t end users

Experienced computer operators and administrators can
learn most or all they need to know by self-study

Introduction to Systems Analysis and Design, 6th Edition 21

Training Users

Creating records or transactions Starting or stopping the system
Modifying database contents (Querying system status
Generating reports Backing up data to archive
(uerying database Recovering data from archive
Importing or exporting data Installing or upgrading software

Introduction to Systems Analysis and Design, 6th Edition

22

Configuring the Production

Environment o

Router and
Firewall

Web/application Database
servers server

Additional or redundant

servers in the cloud DNS, DHCP, and
Active Directory servers

Introduction to Systems Analysis and Design, 6th Edition 23

Planning and Managing 43
Implementation, Testing and Deployment

e Development Order

Input, process, output (IPO) — a development
order that implements input modules first, process
modules next, and output modules last

Top-down development — a development order
that implements top-level modules first
Use stubs for testing
Bottom-up development — a development order
that implements low-level detailed modules first
Use drivers for testing

Introduction to Systems Analysis and Design, 6th Edition 24

Planning and Managing 43
Implementation, Testing and Deployment

e Source code control

An automated tool for tracking source code files
and controlling changes to those files
A programmer checks out a file in read-only mode
when he or she wants to examine the code without

making changes (e.g., to examine a module’s
interfaces to other modules)

When a programmer needs to make changes to a file,
he or she checks out the file in read/write mode

The SCCS allows only one programmer at a time to
check out a file in read/write mode.

Introduction to Systems Analysis and Design, 6th Edition 25

Source Code Control System (SCCS)

Source Control Explorer - Microsoft Visual Studio §.

Heﬁtﬁmﬁwd&ﬁﬂdgg_fmﬂahndskﬂimnmtkdlmm%

SR snr e 4 - B SR i)

o |

Source Control Explorer ¢

05

ane - IR

el X| @ Eay 9| 0%]| [g - | Workspace: |WINZKBSRVRZ64

=laix]

uegn|

Source location: I @ §RMO_CSsAMO_CSsSRMOo_CSS

1o

Folders x ‘

p=]

Local Path: C:\Users'Burd Projects'RMO CSS1RMO CSSRMO CSS\RMO C55

10jd=3 Jand

12

EI---@ win ZkEsrvr 2x64\DefaultCollection
B-Cag RMO_CSS
Fr:l BuildProcessTemplates
== RMO_C5S
ERnS gRMO CS
E-C res

I 5580 g

doid By w2

=]

[
3
E

12

L

k=]

g

1210

Ready

Name &

| Pending Change | zer

| Latest | Last Check-in

LS

[Ares
C:jchildFrm.cpp
1] childFm.h
S MzinFm. cpp
iﬂ MainFrm.h
| ReadMe, tut
|ﬂ Resource.h
¢ARMO_CSS.cpp
[n] RMO_CSSh
ElrMo_cssrc
FrMO_CSS.vexproj
[FARMO_CSS vexpraj. flters
b RMO_CSS.voxproj. vapstc
¢ARMO_CSSDoc.mp

 |n] RMO_CSSDoc.h
CHRMO_CSSView.cpp
[6] RMo_cssview.h
'?;ﬂsh:lafx.cpp
[1] stdafch
ﬂ targetver.h

edit
edit
edit
edit

lnck, edit
lock, edit

Jackeon
Jackson
Satzinger
Satzinger

Satzinger
Satzinger

Yes
e
Yes
Mo

Mo

fesg
Yes
fes
fes
Yes
fes
e
fes
fes
Yes
Yes
fes
Yes
Yesg
‘fes

Yes

7/1/2011 10:55:57 AM
7/1/2011 11:15:20 AM
7/1/2011 11:15:20 AM
7/1/2011 11:24:02 AM
7/1/2011 11:24:02 AM
7/1/2011 10:55:57 &M
7/1/2011 10:55:57 AM
7/1/2011 10:55:57 AM
7/1/2011 10:55:57 AM
7112011 10:55:57 AM
7/1/2011 10:55:57 AM
7/1/2011 10:55:57 AM
7/1/2011 10:55:57 AM
7/1/2011 10:55:57 &AM
7/1/2011 10:55:57 AM
7/1/2011 11:19:01 AM
7/1/2011 11:19:01 AM
7/1/2011 10:55:57 AM
7/1/2011 10:55:57 AM
7/1f2011 10:55:57 AM
7/1/2011 10:55:57 AM

Introduction to Systems Analysis and Design, 6th Edition

HOQoo|

26

Planning and Managing 43
Implementation, Testing and Deployment

e Packaging, installing, and deploying components

Issues to consider when planning
Incurring costs of operating both systems in parallel
Detecting and correcting errors in the new system
Potentially disrupting the company and its IS operations
Training personnel and familiarizing customers with new
procedures

Different approaches
Direct deployment
Parallel deployment
Phased deployment

Introduction to Systems Analysis and Design, 6th Edition 27

Planning and Managing ses.
Implementation, Testing and Deployment s:.

7))
Q

e Direct deployment — a deployment method that installs
new system, quickly makes it operational, and
iImmediately turns off any overlapping systems
e Higher risk, lower cost

0ld system in operation i
K4
New system | Time
deployed and Old system

configured terminated

Introduction to Systems Analysis and Design, 6th Edition 28

Planning and Managing cecs
Implementation, Testing and Deployment 1T

e Parallel deployment — a deployment method that
operates the old and the new systems for an extended
time period
e Lower risk, higher cost

Old system in operation >

Deployedand __
configured

#
Parallel operation
and testing

Introduction to Systems Analysis and Design, 6th Edition 29

Planning and Managing cecs

- - L XX
Implementation, Testing and Deployment oo
e Phased :
deployment — | owssema mopersten :>
e adeployment hase1 [—
method that S ,
installs a new i E
SyStem and Old system B in operation :>:
makes it

operational in a
series of steps
or phases

i
1
i i
i i
Phase2 i - N
deployed E

E FPhased ___ _
i deployed

{i

Phase 1
begins
operation

Phase 3 parallel
operation and testing

.

Phase 2 parallel
operation and testing

Introduction to Systems Analysis and Design, 6th Edition 30

Planning and Managing 3T
Implementation, Testing and Deployment

e Submitting Error Reports and Change Requests

Standard reporting methods

Review of requests by a project manager or change control
committee

For operational systems, extensive planning for design and
Implementation

e Implementing a Change
|dentify what parts of the system must be changed

Secure resources (such as personnel) to implement the
change

Schedule design and implementation activities

Develop test criteria and a testing plan for the changed
system

Introduction to Systems Analysis and Design, 6th Edition 31

Planning and Managing 43
Implementation, Testing and Deployment

e Change and Version Control — tools and processes
handle the complexity associated with testing anc
supporting a system through multiple versions

Alpha version — a test version that is incomplete but ready
for some level of rigorous integration or usability testing

Beta version — a test version that is stable enough to be
tested by end users over an extended period of time

Production version, release version, or production release —
a system version that is formally distributed to users or
made operational for long-term use

Maintenance release — a system update that provides bug
fixes and small changes to existing features

Introduction to Systems Analysis and Design, 6th Edition 32

RMO CSMS System Revisited

e Upgrade or Replace?
The current infrastructure is near capacity.

RMO expects to save money by having an
external vendor host the CSMS

Existing CSS programs and Web interfaces are a
hodgepodge developed over 15 years

Current system software is several versions out of
date

Infrastructure that supports the current CSS can
be repurposed to expand SCM capacity

e Therefore RMO decided to Replace

Introduction to Systems Analysis and Design, 6th Edition 33

RMO CSMS System Revisited

e Phased Deployment to Minimize Risk
Deploy in two versions

e Database Development and Data Conversion

New database built and data migrated before deploying
version 1, in iterations

e Development Order

Start with the higher risk Sales subsystem and customer
facing Order fulfillment subsystem

e Documentation and Training
Spread throughout later iterations for both versions

Introduction to Systems Analysis and Design, 6th Edition 34

RMO CCMS Iteration Plan (part 1)

Iteration Description

1 Define business models and development/deployment environment. Define essential use cases and

rough class diagram. Storyboard sales processing. Finalize deployment environment. Select and
acquire network components, system software, hardware, and development tools. Create a C55
database copy with minimal data content as a starting point for CSMS database. Construct a simple
prototype for adding a customer order [no database updates| and perform usability testing.

Zz Define class, use case, sequence diagrams, and programs, concentrating on the key use cases

customer/sales function set, and user interfaces.

[Search for item, Fill shopping cart, Check out shopping cart, Look up customer, and Create customer
account]. Deploy infrastructure components, including operating systems, Web/application servers,
and DBMS by the middle of the iteration. Update database schema based on newly defined or revised
classes and associations. Perform usability, unit, and integration testing to validate database design,

3 Loop through iteration 2 use cases again and make all changes determined at the end of the previous
iteration. Expand requirements and design to cover additional sales use cases and essential customer
account and order-fulfillment use cases. Perform usability, unit, and integration testing.

4 Loop through iteration 3 use cases again and make all changes determined at the end of the previous

database.

iteration. Expand requirements and design to cover remaining Marketing subsystem use cases for
products and promotions. Develop customer-oriented online help for all functions implemented in
previous iterations. Prepare training materials and conduct training for phone and retail stores sales
personnel. Finalize the new database and prepare it for data migration. Develop data migration
limport] procedures. Test and refine data migration procedures by importing all data from the C55

Introduction to Systems Analysis and Design, 6th Edition

35

RMO CCMS Iteration Plan (part 2) | e::

5

Loop through iteration 4 use cases again and make all changes determined at the end of the previous
iteration. Continue training for phone and retail stores sales personnel. Conduct usability tests with a
large number of actual or simulated customers. Make any needed changes to user interfaces,
including online help. Conduct performance and stress testing and make any needed changes.
Create a copy of the C5M5 deployment environment at the Park City data center for use as a test
systemn for version 2.0 development. Conduct use acceptance testing. Import all CS5 database
changes since the last import. Place version 1.0 into production.

Monitor system performance and user comments. Develop a change list and classify them as "ASAP”
or “version 2.0." Implement ASAP changes. Expand requirements and design to cover essential use
cases from the Reporting subsystem and those related to social networking. Migrate database
updates from CSMS to C55 database twice per day. If no problems are encountered with CSMS,
discontinue data migration and old system operation at the end of this iteration.

Loop through iteration & use cases again and make all changes determined at the end of the previous
iteration. Expand requirements and design to cover all remaining use cases. Update database design
as needed to support version 2.0 use cases. Program iteration 7 and use cases and conduct unit and
integration testing.

Develop customer-oriented online help for all functions implemented in iterations 6 and 7. Prepare
training materials and conduct training for sales, marketing, and management personnel. Conduct
usability tests with a large number of actual or simulated customers. Make any needed changes to
user interfaces, including online help. Update the production database with any structural changes
in the test database.

Continue training for sales, marketing, and management personnel. Conduct performance and stress
testing and make any needed changes. Conduct use acceptance testing. Place version 2.0 into
production.

Introduction to Systems Analysis and Design, 6th Edition 36

Summary

e |mplementation and deployment are complex processes

because they consist of so many interdependent
activities

e Implementation activities include program the software,
unit tests, building test cases, and integrate and test
components

e Deployment activities include perform system and
stress tests, perform acceptance tests, convert existing
data, build training materials/conduct training, configure
and set up the production environment, and deploy the
solution

e Testing is a key activity of implementation and
deployment and includes unit tests, integration tests,
usability tests, system/performance/stress tests, and

acceptance tests
Introduction to Systems Analysis and Design, 6th Edition

37

Summary (continued)

e A program development plan is a trade-off among
available resources, available time, and the desire
to detect and correct errors prior to system
deployment

e Configuration and change management activities
track changes to models and software through
multiple system versions, which enables
developers to test and deploy a system in stages

e \ersioning also improves post deployment support
by enabling developers to track problem support to
specific system versions

e Source code control systems enable development
teams to coordinate their work

Introduction to Systems Analysis and Design, 6th Edition

38

Summary (continued) o

e Three options for deployment include direct
deployment, parallel deployment and phased
deployment

e Direct deployment is riskier but less expensive.
Parallel deployment is less risky but more
expensive

e For moderate to large projects, a phase
deployment approach makes sense to get key
parts of the system operational earlier

Introduction to Systems Analysis and Design, 6th Edition 39

