Chapter 11

Object-oriented design use case
realizations

Dr. Supakit Nootyaskool
Faculty of Information Technology

King Mongkut’s Institute of Technology Ladkrabang

Outline

<
<
<
<
<

Detailed Design of Multilayer Systems

Use Case Realization with Sequence Diagrams
Designing with Communication Diagrams
Updating and Packaging the Design Classes

Design Patterns

Objective

» Explain
The different types of objects and layers in a design
Design patterns and recognize various specific patterns
» Develop
Sequence diagrams for use case realization
Communication diagrams for detailed design
Updated design class diagrams
Multilayer subsystem packages

Overview

4

Chapter |0 introduced software design concepts for OO
programs, multi-layer design, use case realization using the
CRC cards technique, and fundamental design principles

This chapter continues the discussion of OO software
design at a more advanced level

Three layer design is demonstrated using sequence
diagrams, communication diagrams, package diagrams, and
design patterns

Design is shown to proceed use case by use case, and
within each use case, layer by layer

11.1 Detailed design of multilayer systems

» From Chapl0.| has three
objects
Input windows object
(Screen)

2, Request
student
object.

Stdt

Student object (business logic
layer)

Database access object

Communication between
object

t

Called three layers or

4. Enter persona
1. Enter student ID. information update.

3. Retrieve student
information.

Database
access
object

[] % m
model-view-controller T [
: o [EE
architecture. T
Saleltem Productitem
B | oo [genee| [ot dwrai
ﬁmm‘;ﬂ& request backorder Inventoryltem
D atory
SaleTransactlon Inventoryltem
e T | s

11.1.1 Pattern and the use case controller

» Pattern = template is a set of instruction or decorative
design to be followed in making an item or component.

Cut fabric
Build building
Sound system
Products

» Design pattern is standard templates for developing
software that uses the concept of object-oriented design.
Presented in 1996,“Element of Reuseble Object-Oriented
Software”
Gang of Four (GoF)

11.1 Detailed design of multilayer systems

» Questions that come up include
How do objects get created in memory!?
How does the user interface interact with other objects!?
How are objects handled by the database!?

Will other objects be necessary?
What is the lifespan of each object!?

» In the use case, the message comes from the external actor to a
windows class that is electronics input form

11.1 Detailed design of multilayer systems

» The first example of a programming design pattern shown
is the Controller Pattern.

Problem is deciding how to handle all of the messages from the
view layer to classes in the problem domain layer to reduce
coupling

Solution is to assign one class between the view layer and the

problem domain layer that receives all messages and acts as a
switchboard directing messages to the problem domain

» The use case controller is the intermediate class that act
as buffer between user interface and the domain classes.

Convert data format

Preparing data before calculation.

11.1 Detailed design of multilayer systems

» They are the specific of the controller pattern having five
elements.
Pattern name
Problem that requires a solution
Solution to or explanation of the pattern

Example of the pattern
Benefits and consequences of the pattern

1 1 . 1 Detaﬂed Pattern specification for the controller pattern
design of multilayer “~ e

S el sl b A e s
Systems fstl)r receiving the input messages? e

User- interface classes become very complex if they have visibility to all of the
domain classes. How can the coupling between the user-interface classes and
the domain classes be reduced?

Solution: Assign the responsibility for receiving input messages to a class that receives

all input messages and acts as a switchboard to forward them to the correct

domain class. There are several ways to implement this solution:

(a) Have a single class that represents the entire system, or

(b) Have a class for each use case or related group of use cases to actas a
use case handler.

Example: The RMO Customer account subsystem accepts inputs from a :CustomerForm window.
These input messages are passed to the :CustomerHandler, which acts as the switchboard to
forward the message to the correct problem domain class.

RMO New Customer

Controller class

0
gl

Cancel

l createNewCustomer ()
createNewCustomer () createNewCustomer ()
1

> ! >
:CustomerForm +{ :CustomerHandler :Customer

User interface Domain classes

Other cases of the controller pattern will be used for each RMO use case.

Benefits and Coupling between the view layer and the domain layer is reduced.
Consequences: The controller provides a layer of indirection.

The controller is closely coupled to many domain classes.
If care is not taken, controller classes can become incoherent,
with too many unrelated functions.
If care is not taken, business logic will be inserted into the controller class.

Example: The RMO Customer account subsystem accepts inputs from a :CustomerForm window.
These input messages are passed to the :CustomerHandler, which acts as the switchboard to
forward the message to the correct problem domain class.

RMO New Customer

Artificial class

U

I
[
[
: Controller class
[
[
C Save) (CanceD |
1
l createNewCustomer ()
1
createNewCustomer () createNewCustomer ()
[
> ! >
:CustomerForm + :CustomerHandler :Customer

User interface Domain classes

Other cases of the controller pattern will be used for each RMO use case.

11.1 Detailed design

The design principles
should balance many
factors.

of multilayer systems

indirect

T
Protection |
from variations |

B

A
responsibility |

11.2 Use case realization with sequence
diagrams

» Use case realization—the process of elaborating the
detailed design of a use case with interaction
diagrams

» Two types of interaction diagrams
UML sequence diagram emphasizes the sequence of
messages sent between obijects.
Single-layer design
Multilayer design

UML communication diagram emphasizes the sequence of
message sent and receive to object.

11.2.1 Sequence diagram

» Sequence diagrams, use case realization sequence
diagrams, extend the system sequence diagram (SSD) to
show:

ternal actor
View layer objects e
Domain layer objects (usually done first) %
1/ :System
. Clerk
Data access layer objects 5 5
: eeeeee NewCustomer (name, phones, emai 1) \:
: (custID, name, phones, emai 1) :
:é__________________: A lifeline repi
| | | the tim_el fi
' Address (address) I'| the obje
i =1
_ __ _ _ updatedaddress) |
1 1
E enterCreditCard (cc-info) \E
e (updated o)
I \\
Ret rn‘v‘l
output messag

*[true/false condition] return value := message-name (parameter-list)

The external actor
that interacts with

The system object

the system (underlined)
/
Input message
¥ :System
Clerk [

| |II.'I 1
: I |
I f [
: createNewCustomer (name, phones, email) _J

-
1 I
| (custlD, name, phones, email) I
:é : A lifeline representing
| { | the timeline for
1 1 | the object
| enterAddress (address) N ! ,
[1 /-
I (updated address) I /
e e o
| | _,.;-;'Zi"’
I 17
: enterCreditCard (cc-info) J
I 7

(updated cc-info)

:1:_ _

Return value or
output message

11.2.1 Sequence diagram: frames

Test condition for :System
repeatability
Clerk / :
! 1
! 1
Loop for all items ! Repeat everything
1 addltem (itemiD, quantity) ' in the rectangle
¥ A
! 1
1 1 /
! 1
e o P T S e e R R =1
: description, price, extendedPrice :
1 1
! 1
1 :
:System
Customer

o)

: [accessory selected]

addAccessory (anAccessory)

accessary details

- SR Rl SRS

:System

Sales clerk :
! 1
I 1
T A '
I
: [taxable item] :
: addSalesTax (locationCode) \:
1 i

1 !
les t !
e e i b sk R L TR S e
! 1

PR .' -- 1 ttttt
! [else] 1
I

I addTaxExemptionCode (eCode) :
r >}
: tax exemption details :
e e

11.2.1 Sequence diagram:
Example, two-level details design

Lo

Clerk

creat

View layer class

:CustomerForm

Domain layer classes

1
NewCustomer (name, phones, email)

Activation lifeline >

«controller»
:CustomerHandler

createNewCustomer (name, phones, email

v-]_____

Two ways to return data:

as a value or a return message [‘

enterAddress (address)

enterCreditCard (cc-info)

L%’a

(custlD, name, phones, email)

enterAddress (address)

|
|

} - -1

e e =) - ——

(updated address)

enterCreditCard (cc-info)

C:=createNewCustomer (name, phones, email)

aC:Customer

enterAddress (address)

(updated cc-info)

enterCreditCard (cc-info)

SQL Insert
]

Note of expanded sequence diagram

» This is a two layer architecture, as the domain class
Customer knows about the database and executes SQL
statements for data access

» Three layer design would add a data access class to
handle the database resulting in higher cohesiveness and
loose coupling

» Note:

CustomerForm is an object of the CustomerForm class,

:CustomerHandler is an object of the CustomerHandler class

playing the role of a controller stereotype (both underlined
because they are objects)

aC:Customer is an object of the Customer class known by
reference variable named aC

11.2.2 First-cut sequence diagram:
Example create customer account Use case

Design class diagram:

Domain model: (Chap4
(p4) Create customer account use case

Customer account system

«controller» Customer
FriendLink Sale SaleTrans CustomerHandler —=
-accountNo:string {key}
customer1 saleDateTime date -name:string
customer2 priorityCode transactionType -mobilePhone:string
status S&H 1 1..* | amount -homePhone:string
dateLinkedUp tax paymentMethod -emailAddress:string
totalAmt -status:string
mountainBucks

enterAddress (address)

enterCreditCard (cc-info)

0 *l |0 N CustPartnerCredit
amtRMOCredits
Customer amtPartnerCredits PromoPartner
name name Account Address
mobilePhone 0.* 0.* address -accountNo:string -accountNo:string
homePhone - = | contactPerson -typeOfAccount:strin -typeOfAddress:strin
emailAddress —— telephone -::ya‘)rdN Bets tlr'n 9 _zp H-stri S
status agreementDescription ket Sl rhatad ol
-expireDate:date -street2:string
-comment:string -city:string
1. 1 0.1 1.4 -state-province:string
-country:string
To From Account -postalCode:string
. . typeOfAccount
0. 0.. creditCardNo
Message
15 |
date D .
messageText .
U 1.*
Address) «controller= :Customer :Address :Account
number Clerk :CustomerHandler
street ' '
city | createNewCustomer |
state I (name, phones, email) 1
—_—————
zipcode : :
I I
1 1
1 1

11.2.2 First-cut sequence diagram:
Example create customer account Use case

«controller»
:CustomerHandler
T

» Add messages and 5
activation to complete [cenevcisoner ¢

(name, phones, email)

C O I I a b O rati O n aC:=createNewCustomer (name, phones, email)

(CustID, name, phones, email) aC:Customer
< 7777777777

SQL Insert

» This is just the domain

1
I a e r. enterAddress (address)
enterAddress (address) -
y (updated address) aAdd:=createAddress (address)

e]

aAdd:Address

L SAL Insert

» These domain classes
h a. n d I e d ata ac C e S S ’ S O ertredtta e enterCreditCard (cc-info) | 3 acc:—createAccount (cc-info)

(updated cc-info)
| (pdatedcoimo) |
this is a two layer
architecture

}-—-+

aAcc:Account

-———
c————]

SQL Insert
—

11.2.3 First-cut sequence diagram:
Example Fill shopping cart Use case

Activity diagram: (Chap3)

Customer System

«controller»
CartHandler

Design Class Diagram

.

Customer

OnlineCart

Cartitem

-acfjountNo:string (key}
-nafhe:string
-mdpilePhone:string
-hofhePhone:string

-salelD:int {key}
-saleDateTime:date
-priorityCode:string

—>1 -S&H:currency

-saleltemid:int {key}
-productitem:string
-quantity:int

——>1 -soldPrice:currency

-emilAddress:string{index]} -tax:currency -shipStatus:string

-stajpis:string -totalAmt:currency -backOrderStatus:string
Igventoryltem Productitem PromoOffering

-productiem:string -gender:string -regularPrice:currency

-inventorfitem:int

-description:string

-promoPrice:currency

-size:strirfy -supplier:string
-color:strigg -manufacturer:string
-options:diring -picturelD:string

-quantity(inHand:int
-average(pst:currency
-reorderQfantity:int
-datelLast@rder:date
-dateLastghipment:date

Add to cart

Select accessory

options and
quantity /

Sequence diagram

o v

(promoNo, prodiD, size, color, qty)
I —

fistemjreatoCart () 1. coateCart ()
(aCrty ’l OnfineCart |

|
i e
1 (promoNa, prodiD,)
| price = getPrica ()
Customer | e
i | e
1 i i d
1 additemToCart (promoNo, prodID, size, qty) 1] [stet's & reimcly ool Y
T > extendedPrice) | 1 i
(description, price, exlendedPrics) (description, pice, extendedPrice) g——— L H H 1
1 1 L kA= == — 1 ; i : ‘
i H ————— h T | | ' I
' ' : j : : L
:((description, price, extendedPrice) _: Loop for all tems J | i ; " ; i -
[1 aithocamoryBCan | i i i i i i
! ' S : : T
1 I :
1 _ 1 ! crnsteCartiom ! ' i ‘
1 *addAccessoryToCart (promoNo, prodID, size, qty) 1 (promoNe. pmlr;\l mmi ay) ! !
: ’: price := getPrica () : !
: : dascription :~ gatDesc {) |
— I
:i (description, price, extendedPrice) I status - updasQty () |
—————————————————————— {dovcripion, peics,) ! T
1 I iption, price, extendedPrice) ﬂr — _L| : 4 :
T | 1 1
[} 1 1 I
] i I ' I
| i i I i
1 i T T

11.2.3 Guideline and Assumptions for
first-cut sequence diagram development

4

Perfect technology assumption—First encountered for use
cases.We don’t include messages such as the user having to
log on.

Perfect memory assumption—We have assumed that the
necessary objects were in memory and available for the use
case. In multilayer design to follow, we do include the steps
necessary to create objects in memory.

Perfect solution assumption—The first-cut sequence diagram
assumes no exception conditions.

Separation of responsibilities—Design principle that
recommends segregating classes into separate components

based on the primary focus, such as user interface, domain, and
data access

11.2.4 Developing a multilayer design

Problem in domain classes

» Persistent classes is the problem on complex business logic that some
class contains the mechanism for storing and retrieving data from a
database.

Solving

» Apply separate layer is the separate connection to database and SQL
from the domain classes.

The Multilayer design has three-layers design use concept of
separation responsibility
|) View layer
Get input data or commands
Show output or command responding

2) Domain layer
3) Data access layer

Figl11-8
irst-cut sequence diagram for the create customer account use case

«controller»
:CustomerHandler

The SQL statement

: is contained in the -
- | domain layer
1

teNewCust 1
(:::nat: phoneu: :::irl) —\\ p I g].1 3 1 3

aC:=createNewCustomer (nah, es, email Se; uence diagram for fill shopping cart
(CustID, name, phones, email) aC:Custon :| U S C aS e W I t h d at a. aC C eS S I a.yer

-~ — — — — — — — —]

T SQL Insert
1 —>
enterAddress (address) I.Camjandlez M':ﬁomer :
I
1 1

T
Clerk

enterAddress (EMTESS) aAdd:=createAddress (addl'& l :PromoOfferingDA “ :ProductitemDA !!tlnventorvltemDA!

: ! readPO ()
T >
price :-g;e(P'rice() .
%
ﬁnd?rotfllem (prodID)
| T

Data access layer
:CustomerDA

:CartltemDA
:OnlineCartDA

T
(updated address) Cushomer ! 1 ; T
e —— i : 2 |:Prom00ﬁermg| :l :Productitem || I Anventoryltem I !
aAdd:Addi 1 4 findCustomer (acctNo) T i T 1 T J

T i aC = read;Cust (acctNo) : | : :

1

: additemToCart 7 : 1 : 1 !

L (promoNo, pro~’ 1 : | : :

enterCreditCard (cc-info) alzo, °°:°" 4 i |.0 | 1 ! 1 1

. . i :OnlineCartDA \

: enterCreditCard (cc-info) | 3 Acc:—createAccount (cc-in [firsthemcreateCart() : . 1 : 1 1

(updated cc-info) - a'o(: ol ! I ! -

S — (aCrt) rt:OnlineCart | | ' 1 N 1

aAcc:Acce - ! . :] !

! 1 1

T = 1 1 1 :CartitemDA | N

L i addlitemToCart ! _ | createCartitem - ! : 1

1 | (promoNo, prodiD, size, color, qty) (promohfo, prodD, size, color, gty) 1 | I

1 2 ; v] 1 1

. ! ' T

1 I findPromo (promolD, prodiD) ! !

1 I

1 1

1 1

1 I

1 I

1
1

1
readProd ()

description := getDesc () \:
i [
1

1
I
M . .
1 findinvitem (prodID, size, color)
- = T ,E] readinv ()
] 1
1 .] 1
1, status := updateQty (qty) | 1
- ‘ = i ! ’
(description, price, extendedPrice) (description, price, extendedPrice) 1 1 I
1 W= — ——— é__:___ saveCartitem (aCl) : :
(descriptio.n. price, extendedPrice) 1 saveCart (aCrt) | | :
1
1 I
'

N I

al

Data access notes

» :CartHandler findCustomer(acctNO) message to Customer
class means Customer should create a new instance named
aC, send a message to :CustomerDA asking it to read info
from the database for a customer with that account number,
and then populate the new customer instance with the
attribute values from the database.

» The other times a domain object is needed, a similar pattern is
used, such as when needing information from :PromoOffering,
:Productltem, :Inventoryltem from each :Cartltem to display in
the :OnLineCart. :PromoOfferingDA, :ProductltemDA, and
:InventoryltemDA are asked to find the data and populate the
instances.

» :Cartltem and :OnlineCart ask DA classes to save them

. Fig11-14
11.2.4 DGVClOplng a Partial sequence diagram for fill

multilayer deSign: :Searc;;r;i:r\:\;ﬁndow \S/ihe?,\r})f)ai;grcart HEE R “CartHandler
View layer Cusere

| addlte- rit I
= DNo, prodID, size, color, qty)

addltemToCart

I
|
I
|
I
|
I
I
I
|
|
; I
(promoNe, prot.}iID, size, color, gty — n
(promoNo, prodID, size, color, qty)

wyiswn» .

|
I
: :CustloginWindow Etinfo := requestCustiD |)
|
[

View layer

s iews
DisplayltemWindow

(deseription, price, extendedPrice)

(promoNo, prodlD, size, color, gty)

(description, price, extendedPrice)

“VigW=

:Displayltem+AccessWindow

L
=< I
I I
1 |
| |
| |
| |
I I
| «ViEWs |
! YiewAccessWindow I
I I
I I
| addAccessoryToCart | I
: (promoNo, prodID, size, color, qty) :
L I
| |
I ; I
| aviews |
| :AddAccessWindow |
i addAccessoryToCart |
| (promoNo, prodlD, size, color, qfy |
| addAccessoryToCart |
| —
I
I
I
I
I
|
I
I
I
|
I
I
I

e == |
(description, price, extendedPrice)

-

11.3 Designing communication diagrams

» Shows the same information as a sequence diagram

» Symbols used in a communication diagram:

An object that
An actor who sends receives a message
the initial message and sends other

/ messages

1: firstMessage ()
S

:Object

2: secondMessage ()
.

h
4: finalResponse ()

Actor

b
3: returnMessage ()

A link between
symbols that send or
receive messages

A message arrow and
descriptive name

:Object2

[true/false condition] sequence-number; return-value := message-name(parameter-list)

11.3 Designing communication diagrams
Example Fill Shopping Cart use case

» This diagram should math the domain layer sequence
diagram shown earlier.

» Many people prefer them for brainstorming Ll [ire7E e
UpdateQty gets
number qty and

1.2.1:createCartltem after running it
(promoNo, prodID, return status
1.2:addltemToCart size, color, qty)
(promoNo, prodID, S
size, color, qty) :OnlineCart :Cartltem
1:addltemToCart
(promoNo, prodID, /’
size, color, qty) 1.2.1.1:price := getPrice () 1.2.1.3:status := updateQty (qty)
——= | .cartHandler T 1.1.1:aCrt := createCart (
Customer \ /1.2.1.2:descrip1ic-n := getDesc ()

[firstitem]1.1:createCart () :Customer :PromoOffering :Productltem :Inventoryltem

11.4 Updating and packaging the design

classes

» Design class diagram (DCD)
focuses on domain layer

» The first step in updating DCD
is to add the three-method
sighatures

|) Constructor methods
2) Data-get/set method

3) Use case-specific method

Inventoryltem

-productltem:string
-inventoryltem:int
-size:string

-color:string
-options:string
-quantityOnHand:int
-averageCost:currency
-reorderQuantity:int
-dateLastOrder:.date
-dateLastShipment:date

+updateQty (qgty):string

11.4 Update design class diagram
for domain layer

Dependence
package
age diagram of RMC

Fig11-19
Partial design of three-lay

«controllers «controllers .
CustHandler CartHandler View Layer |
+addltemToCart (promoNe, prodID, . 4 . .
i.wIB, size, C'UIE,L aty) SearchltemWindow |— 4 — — ViewAccessWindow
raddAnsnceTaMart Inenmnlla nreadlD 1

+createMewCusiomer (name, phones, email)

Account —_— ClSwn. ~—

et e Dependency |—{—] AdditemWindow
relatlonShlp) : Displayltem+AccessWindow |—
|

-accountNo:string

-accountNozsiring [key)

— — AddAccessWindow
|
I

| CustLoginWindow

y i

Data Acces” ﬁ W

Inventoryltam Productitem PromoDffering

-productitem:string
-inventoryltem:int
-size:string

-color:string
-options:string
-quantityOnHand:int
-averageCosl:currency
-reorderQuantity:int
-dateLastOrder:date
-dateLastShipment:date

-gender:string
-description:string
-supplier:string
-manufacturer:string
-picturelD:string

-regularPrice:currency
-promoPrice:currency

CustomerDA PromoOfferingDA

|
|
|| |
|I |
|
1ypeOfAccount:strin -name:siring isiplayltemWindow
yp g DisiplayltemWind | |
-cardNumber:string -mobilePhone:string I | |
-expireDate:date -homePhonestring I | | |
-comment:siring -emailAddress:string(index} | sl |
-status:string I ___ | | I | I
+createAccount(cc-info) I I Domain Layer | | I I |
- +crealeNewCustomer () | + I
Cartitem +enterAddress (address) I | I !
“saloltamicint (koy] +enterCreditCard (cc-info) | | I I I
“productitem:sking +creaieCart () | CartHandler | I CustomerHandler | |
-quantity:int | | I
\Ifi -soldPrice:currency | | I | ‘ | |
-shipStatus:string
Address -backOrderStatus:string OnlineCart | | I | I ‘ I I
-accountNosstring -salelD:int {key) | - I ‘ | |
-LypeOI..AdCIr'essnermg +createGartltem (promolD, -saleDateTima:date | OnlineCart | | Address |
et sng D, Sl o) o B X 1 I
city:strin tax:ct I
-stgtg-pro?‘rincg:smng -t:raf:r(r:izgmncy I L]— = Cartltem | | Account I | :
try:st
ostalCodestmg - LY |]
e) (promolD, ¢ PromoOffering /ﬁoductltem Inventoryltem f<— — —L
+createAddress (address) InvID, size, color, qty) / |
' i I
I
I
I
I
I

OnlineCartDA ProductitemDA —

Independence

+getPrica ()¢

CartltemDA l [InventoryltemDA

package
|

+updateQty (qty):string

+getDesc ():string |

n . . N B P

11.4 Update design class diagram for domain layer
RMO subsystem package diagram

Sales Subsystem Customer Account Subsystem
View Layer CustomerHandler FamilyLink
- - - Customer Message
SearchltemWindow ViewAccessWinodw B
- : , Address Suggestion
AdditemWindow Displayltem+AccessWindow
- - Account CustPartnerCredit
AddAccessWindow DisiplayltemWindow
CustLoginWindow
Order Fulfillment Subsystem
Domain Layer
< — — Shipment Shipper
CartHandler Returnitem AccessoryPackage
OnlineCart Sale SaleTxn Marketing Subsystem
Cartitem Salelt '
Independence PromoPartner Productitem
ackage - -
Data Access Layer p g <— Promotion Inventory Item
: —_ |
Dependence
CustomerDA PromoOfferingDA
package
OnlineCartDA ProductitemDA
Reporting Subsystem
CartitemDA InventoryltemDA
6 —

11.4.1 Implementation issues
Three layer design

» View Layer Class Responsibilities

p.329

Display electronic forms and reports.

Capture such input events as clicks, rollovers, and key
entries.

Display data fields.
Accept input data.
Edit and validate input data.

Forward input data to the domain layer classes.
Start and shut down the system.

11.4.1 Implementation issues
Three layer design (2)

» Domain Layer Class Responsibilities
Create problem domain (persistent) classes.
Process all business rules with appropriate logic.
Prepare persistent classes for storage to the database.

» Data Access Layer Class Responsibilities
Establish and maintain connections to the database.
Contain all SQL statements.

Process result sets (the results of SQL executions) into
appropriate domain objects.
Disconnect gracefully from the database.

11.5 Design patterns
» Adapter

Like an electrical adapter

The adapter class is inserted to convert
the method calls from within the system
to the method names in the external class.

» Factory
Encapsulation data to protect client’s
object access or modify source of the data.

Use factor class when creation logic is
complex for a set of classes

» Singleton

Use when only one instance should exist
at a time and is shared

11.5.1 Adapter
design pattern

Adapter class

Adapter

Problem:

A class must be replaced, or is subject to being replaced, by another standard
or purchased class. The replacing class already has a predefined set of method
signatures that are different from the method signatures of the original class.
How do you link in the new class with a minimum of impact so that you don't
have to change the names throughout the system to the method names in

the new class?

Solution:

Write a new class, the adapter class, which serves as a link between the original system
and the class to be replaced. This class has method signatures that are the same as
those of the original class (and the same as those expected by the system). Each method
then calls the correct desired method in the replacement class with the method signature.
In essence, it “adapts” the replacement class so that it looks like the original class.

Example:

i~

There are several places in the RMO system where class libraries were purchased to
provide special processing. These purchased libraries provide specialized services
such as tax calculations and shipping and postage rates. From time to time, these
service libraries are updated with new versions. Sometimes a service library is even
replaced with one from an entirely different vendor. The RMO systems staff applies
protection from variations and indirection design principles by placing an adapter

in front of each replaceable class.

«interface»

System TaxCalculatorlF

getSTax ()
getUTax ()

TaxCalcAdapter ABCTaxCalculator

getSTax () findTax1 ()
getUTax () findTax2 ()

Benefits and
consequences:

The adaptee class can be replaced as desired. Changes are confined to the adapter
class and do not ripple through the system.

Two classes are defined, an interface class and the adapter class.

Passed parameters may add more complexity, and it is difficult to limit changes to
the adapter class.

11.5.2 Factory
design pattern

Create new object
of Order DA

Name:

Factory or Factory Method

Problem:

Who should be responsible for creating utility type objects that do not specifically
belong to the problem domain classes? These utility objects may also be accessed
from various places within the system, so a given object may need to be instantiated
from several classes.

Solution:

Create an artifact that is a factory class. Its responsibility is only to instantiate utility
classes. In many situations, only one instance of a particular utility class is allowed.
Hence, all classes that need access to the class come through the factory. The
factory ensures that only one instance is created.

Example:

Several places in the RMO system need to get data from an Order object and need
to have a reference to an Order_DA [data access] object. The Order_DA object may
or may not already have been instantiated. A data access factory is defined and an
interface is created. The requesting object uses the methods defined in the interface
to request the reference to the Order_DA object. It then can read the database

of orders.
:System «USes» Order_DA
Customer
Order «requiresDA»
Shipment «interface»
DAFactory_iF
getOrder DA ()
getCustomer_DA ()
getShipment_DA ()
S— “lic synchronized Order_DA getOrder_DA () {
“* (myODA == null) {
myODA = new Order_DA (); DAFactory
}
return myODA; -myODA: Order_DA
} -myCDA: Customer_DA

-mySAD: Shipment_DA

getOrder_DA ()
getCustomer_DA ()
getShipment_DA ()

Benefits and
Consequences:

Higher cohesion of problem domain classes
Less coupling between business logic layer and data layer
Smaller, more maintainable classes

11.5.3 Singleton
design pattern

Name:

Singleton

Problem:

Only one instantiation of a class is allowed. The instantiation (new) can be
called from several places in the system. The first reference should make a
new instance, and later attempts should return a reference to the already
instantiated object. How do you define a class so that only one instance is
ever created?

Solution:

A singleton class has a static variable that refers to the one instance of itself.

All constructors to the class are private and are accessed through a method

or methods, such as getinstance(). The getinstance() method checks the variable;
if it is null, the constructor is called. If it is not null, then only the reference to

the object is returned.

Example:

In RMO's system, the connection to the database is made through a class called
Connection. However, for efficiency, we want each deskiop system to open

and connect to the database only once, and to do so as late as possible. Only
one instance of Connection—that is, only one connection to the database—is
desired. The Connection class is coded as a singleton. The following coding
example is similar to C# and Java:

Class Connection

{

private static Connection conn = null;
public synchronized static getConnection ()

if (conn == null) {
conn = new Connection ();}
return conn;

}

Another example of a singleton pattern is a utilities class that provides services for the system,
such as a factory pattern. Because the services are for the entire system, it causes confusion if
multiple classes provide the same services.

An additional example might be a class that plays audio clips. Since only one audio clip should
be played at one time, the audio clip manager will control that. However, for this to work, there
must be only one instance of the audio clip manager.

Benefits and
consequences:

There are other times when only one instance of an object is needed, but if it is instantiated from
only one place, then a singleton may not be required. The singleton object controls itself

and ensures that only one instance is created—no matter how many times it is called and
wherever the call occurs in the system.

The code to implement the singleton is very simple, which is one of the desirable characteristics
of a good design pattern.

Summary

)

This chapter went into more detail about use case realization
and three layer design to extend the design techniques from
last chapter

Three layer design is an architectural design pattern, part of
the movement toward the use of design principles and
patterns.

Use case realization is the design of a use case, done with a
design class diagram and sequence diagrams. Using sequence
diagrams allows greater depth and precision than using CRC
cards.

Use case realization proceeds use case by use case (use case
driven) and then for each use case, it proceeds layer by layer

Summary (2)

)

Starting with the business logic/domain layer, domain classes
are selected and an initial design class diagram is drawn.

The systems sequence diagram (SSD) from analysis is
expanded by adding a use case controller and then the domain
classes for the use case.

Messages and returns are added to the sequence diagram as
responsibilities are assigned to each class.

The design class diagram is then updated by adding methods
to the classes based on messages they receive and by updating
navigation visibility.

Simple use case might be left with two layers if the domain
classes are responsible for database access. More complex

systems add a data access layer as a third layer to handle
atabase access

Summary (3)

)

The view layer can also be added to the sequence diagram to
show how multiple pages or forms interact with the use case
controller.

The UML communication diagram is also used to design use
case realization and it shows the same information as a
sequence diagram.

The UML package diagram is used to structure the classes into
packages, usually one package per layer. The package diagram
can also be used to package layers into subsystems.

Design patterns are a standard solutions or templates that
have proven to be effective approaches to handling design

problems. The design patterns in this chapter include
controller, adapter, factory, and singleton

