
Chapter 11

Object-oriented design use case
realizations

Dr. Supakit Nootyaskool

Faculty of Information Technology

King Mongkut’s Institute of Technology Ladkrabang

Outline

 Detailed Design of Multilayer Systems

 Use Case Realization with Sequence Diagrams

 Designing with Communication Diagrams

 Updating and Packaging the Design Classes

 Design Patterns

Objective

 Explain

 The different types of objects and layers in a design

 Design patterns and recognize various specific patterns

 Develop

 Sequence diagrams for use case realization

 Communication diagrams for detailed design

 Updated design class diagrams

 Multilayer subsystem packages

Overview

 Chapter 10 introduced software design concepts for OO

programs, multi-layer design, use case realization using the

CRC cards technique, and fundamental design principles

 This chapter continues the discussion of OO software

design at a more advanced level

 Three layer design is demonstrated using sequence

diagrams, communication diagrams, package diagrams, and

design patterns

 Design is shown to proceed use case by use case, and
within each use case, layer by layer

11.1 Detailed design of multilayer systems

 From Chap10.1 has three
objects

 Input windows object
(Screen)

 Student object (business logic
layer)

 Database access object

 Communication between
object

 Called three layers or
model-view-controller
architecture.

11.1.1 Pattern and the use case controller

 Pattern = template is a set of instruction or decorative
design to be followed in making an item or component.

 Cut fabric

 Build building

 Sound system

 Products

 …

 Design pattern is standard templates for developing
software that uses the concept of object-oriented design.

 Presented in 1996, “Element of Reuseble Object-Oriented
Software”

 Gang of Four (GoF)

11.1 Detailed design of multilayer systems

 Questions that come up include
 How do objects get created in memory?

 How does the user interface interact with other objects?

 How are objects handled by the database?

 Will other objects be necessary?
 What is the lifespan of each object?

 In the use case, the message comes from the external actor to a
windows class that is electronics input form

11.1 Detailed design of multilayer systems

 The first example of a programming design pattern shown
is the Controller Pattern.

 Problem is deciding how to handle all of the messages from the
view layer to classes in the problem domain layer to reduce
coupling

 Solution is to assign one class between the view layer and the
problem domain layer that receives all messages and acts as a
switchboard directing messages to the problem domain

 The use case controller is the intermediate class that act
as buffer between user interface and the domain classes.

 Convert data format

 Preparing data before calculation.

11.1 Detailed design of multilayer systems

 They are the specific of the controller pattern having five

elements.

 Pattern name

 Problem that requires a solution

 Solution to or explanation of the pattern

 Example of the pattern

 Benefits and consequences of the pattern

11.1 Detailed

design of multilayer
systems

Pattern specification for the controller pattern

Artificial class

11.1 Detailed design of multilayer systems

The design principles

should balance many
factors.

11.2 Use case realization with sequence
diagrams

 Use case realization—the process of elaborating the

detailed design of a use case with interaction

diagrams

 Two types of interaction diagrams

 UML sequence diagram emphasizes the sequence of

messages sent between objects.

 Single-layer design

 Multilayer design

 UML communication diagram emphasizes the sequence of

message sent and receive to object.

11.2.1 Sequence diagram

 Sequence diagrams, use case realization sequence

diagrams, extend the system sequence diagram (SSD) to

show:

 View layer objects

 Domain layer objects (usually done first)

 Data access layer objects

*[true/false condition] return value := message-name (parameter-list)

11.2.1 Sequence diagram: frames

11.2.1 Sequence diagram:
Example, two-level details design

Note of expanded sequence diagram

 This is a two layer architecture, as the domain class
Customer knows about the database and executes SQL
statements for data access

 Three layer design would add a data access class to
handle the database resulting in higher cohesiveness and
loose coupling

 Note :

 CustomerForm is an object of the CustomerForm class,

 :CustomerHandler is an object of the CustomerHandler class
playing the role of a controller stereotype (both underlined
because they are objects)

 aC:Customer is an object of the Customer class known by
reference variable named aC

11.2.2 First-cut sequence diagram:
Example create customer account Use case

Domain model: (Chap4)
Customer account system

Design class diagram:
Create customer account use case

SSD:

 Add messages and

activation to complete

collaboration

 This is just the domain

layer

 These domain classes

handle data access, so

this is a two layer
architecture

11.2.2 First-cut sequence diagram:
Example create customer account Use case

11.2.3 First-cut sequence diagram:
Example Fill shopping cart Use case

Activity diagram: (Chap3)

SSD:

Design Class Diagram

Sequence diagram

11.2.3 Guideline and Assumptions for
first-cut sequence diagram development

 Perfect technology assumption—First encountered for use
cases. We don’t include messages such as the user having to
log on.

 Perfect memory assumption—We have assumed that the
necessary objects were in memory and available for the use
case. In multilayer design to follow, we do include the steps
necessary to create objects in memory.

 Perfect solution assumption—The first-cut sequence diagram
assumes no exception conditions.

 Separation of responsibilities—Design principle that
recommends segregating classes into separate components
based on the primary focus, such as user interface, domain, and
data access

11.2.4 Developing a multilayer design
Problem in domain classes

 Persistent classes is the problem on complex business logic that some
class contains the mechanism for storing and retrieving data from a
database.

Solving

 Apply separate layer is the separate connection to database and SQL
from the domain classes.

The Multilayer design has three-layers design use concept of
separation responsibility

 1) View layer
 Get input data or commands

 Show output or command responding

 2) Domain layer

 3) Data access layer

Fig11-8
First-cut sequence diagram for the create customer account use case

The SQL statement
is contained in the

domain layer
Fig11-13
Sequence diagram for fill shopping cart
use case with data access layer

Data access layer
:CustomerDA
:CartItemDA

:OnlineCartDA

Data access notes
 :CartHandler findCustomer(acctN0) message to Customer

class means Customer should create a new instance named
aC, send a message to :CustomerDA asking it to read info
from the database for a customer with that account number,
and then populate the new customer instance with the
attribute values from the database.

 The other times a domain object is needed, a similar pattern is
used, such as when needing information from :PromoOffering,
:ProductItem, :InventoryItem from each :CartItem to display in
the :OnLineCart. :PromoOfferingDA, :ProductItemDA, and
:InventoryItemDA are asked to find the data and populate the
instances.

 :CartItem and :OnlineCart ask DA classes to save them

11.2.4 Developing a

multilayer design:
View layer

View layer

Fig11-14
Partial sequence diagram for fill
shopping cart use case with
view layer

11.3 Designing communication diagrams

 Shows the same information as a sequence diagram

 Symbols used in a communication diagram:

[true/false condition] sequence-number; return-value := message-name(parameter-list)

11.3 Designing communication diagrams
Example Fill Shopping Cart use case

 This diagram should math the domain layer sequence

diagram shown earlier.

 Many people prefer them for brainstorming The method
UpdateQty gets
number qty and
after running it
return status

11.4 Updating and packaging the design
classes

 Design class diagram (DCD)

focuses on domain layer

 The first step in updating DCD

is to add the three-method

signatures

 1) Constructor methods

 2) Data-get/set method

 3) Use case-specific method

11.4 Update design class diagram
for domain layer

Fig11-19
Partial design of three-layer package diagram of RMO

Dependency
relationship

Dependence
package

Independence
package

11.4 Update design class diagram for domain layer
RMO subsystem package diagram

Dependence
package

Independence
package

11.4.1 Implementation issues
Three layer design

 View Layer Class Responsibilities

 Display electronic forms and reports.

 Capture such input events as clicks, rollovers, and key

entries.

 Display data fields.

 Accept input data.

 Edit and validate input data.

 Forward input data to the domain layer classes.

 Start and shut down the system.

p.329

11.4.1 Implementation issues
Three layer design (2)

 Domain Layer Class Responsibilities

 Create problem domain (persistent) classes.

 Process all business rules with appropriate logic.

 Prepare persistent classes for storage to the database.

 Data Access Layer Class Responsibilities

 Establish and maintain connections to the database.

 Contain all SQL statements.

 Process result sets (the results of SQL executions) into

appropriate domain objects.

 Disconnect gracefully from the database.

11.5 Design patterns

 Adapter

 Like an electrical adapter

 The adapter class is inserted to convert
the method calls from within the system
to the method names in the external class.

 Factory

 Encapsulation data to protect client’s
object access or modify source of the data.

 Use factor class when creation logic is
complex for a set of classes

 Singleton

 Use when only one instance should exist
at a time and is shared

11.5.1 Adapter
design pattern

Adapter class

11.5.2 Factory
design pattern

Create new object
of Order_DA

11.5.3 Singleton
design pattern

Summary

 This chapter went into more detail about use case realization

and three layer design to extend the design techniques from

last chapter

 Three layer design is an architectural design pattern, part of

the movement toward the use of design principles and

patterns.

 Use case realization is the design of a use case, done with a

design class diagram and sequence diagrams. Using sequence

diagrams allows greater depth and precision than using CRC

cards.

 Use case realization proceeds use case by use case (use case
driven) and then for each use case, it proceeds layer by layer

Summary (2)
 Starting with the business logic/domain layer, domain classes

are selected and an initial design class diagram is drawn.

 The systems sequence diagram (SSD) from analysis is
expanded by adding a use case controller and then the domain
classes for the use case.

 Messages and returns are added to the sequence diagram as
responsibilities are assigned to each class.

 The design class diagram is then updated by adding methods
to the classes based on messages they receive and by updating
navigation visibility.

 Simple use case might be left with two layers if the domain
classes are responsible for database access. More complex
systems add a data access layer as a third layer to handle
database access

Summary (3)
 The view layer can also be added to the sequence diagram to

show how multiple pages or forms interact with the use case
controller.

 The UML communication diagram is also used to design use
case realization and it shows the same information as a
sequence diagram.

 The UML package diagram is used to structure the classes into
packages, usually one package per layer. The package diagram
can also be used to package layers into subsystems.

 Design patterns are a standard solutions or templates that
have proven to be effective approaches to handling design
problems. The design patterns in this chapter include
controller, adapter, factory, and singleton

