INTRODUCTION TO
SYSTEMS ANALY SIS AND

DESIGN:
AN AGILE, ITERATIVE APPROACH

SATZINGER | JACKSON | BURD

Chapter 11

Object-Oriented Design:
Use Case Realizations

Chapter 11

Introduction to Systems
Analysis and Design:

An Agile, lteractive Approach
6th Ed

Satzinger, Jackson & Burd

Chapter 11 Outline :

e Detailed Design of Multilayer Systems

e Use Case Realization with Sequence
Diagrams

e Designing with Communication Diagrams
e Updating and Packaging the Design Classes
e Design Patterns

Introduction to Systems Analysis and Design, 6th Edition 3

Learning Objectives e

Explain the different types of objects and
layers in a design

Develop sequence diagrams for use case
realization

Develop communication diagrams for detailed
design

Develop updated design class diagrams
Develop multilayer subsystem packages

Explain design patterns and recognize various
specific patterns

Introduction to Systems Analysis and Design, 6th Edition 4

Overview 4

e Chapter 10 introduced software design concepts
for OO programs, multi-layer design, use case
realization using the CRC cards technique, and
fundamental design principles

e This chapter continues the discussion of OO
software design at a more advanced level

e Three layer design is demonstrated using
sequence diagrams, communication diagrams,
package diagrams, and design patterns

e Design is shown to proceed use case by use
case, and within each use case, layer by layer

Introduction to Systems Analysis and Design, 6th Edition 5

Detailed Design of Multilayer ::

Systems

e CRC Cards focuses on the business logic, also
known as problem domain layer of classes

e Three layers include view layer, business
logic/problem domain layer, and data access layer

e Questions that come up include
How do objects get created in memory?
How does the user interface interact with other objects?
How are objects handled by the database?
Will other objects be necessary?
What is the lifespan of each object?

Introduction to Systems Analysis and Design, 6th Edition

Design Patterns

e Design Pattern—standard design techniques and
templates that are widely recognized as good practice

e For common design/coding problems, the design
pattern suggests the best way to handle the problem.

e They are written up in design pattern
catalogs/references. Include:
Pattern name
Problem that requires solution
The pattern that solves the problem
An example of the pattern
Benefits and consequences of the a pattern

Introduction to Systems Analysis and Design, 6th Edition

Design Patterns

e Design patterns became widely accepted after the
publication of Elements of Reusable Object-Oriented
Software,(1996) by Gamma et al (the “Gang of Four”)

e There are architectural design patterns talked about
already
Three layer or model-view-controller architecture

e The first example of a programming design pattern
shown is the Controller Pattern.

Problem is deciding how to handle all of the messages from
the view layer to classes in the problem domain layer to
reduce coupling

Solution is to assign one class between the view layer and the
problem domain layer that receives all messages and acts as
a switchboard directing messages to the problem domain

Introduction to Systems Analysis and Design, 6th Edition

Controller
Pattern

First step toward
multilayer
architecture

More design
patterns are at the
end of the chapter

Name:

Controller

Problem:

Domain classes have the responsibility of processing use cases. However,
since there can be many domain classes, which one(s) should be responsible
for receiving the input messages?

User-interface classes become very complex if they have visibility to all of the
domain classes. How can the coupling between the user-interface classes and
the domain classes be reduced?

Solution:

Assign the responsibility for receiving input messages to a class that receives

all input messages and acts as a switchboard to forward them to the correct

domain class. There are several ways to implement this solution:

(a) Have a single class that represents the entire system, or

(b) Have a class for each use case or related group of use cases to actas a
use case handler.

Example:

The RMO Customer account subsystem accepts inputs from a :CustomerForm window.
These input messages are passed to the :CustomerHandler, which acts as the switchboard to

forward the message to the correct problem domain class.

RMO New Customer

Controller class

1createNewCustomer ()
createMewCustomer () / createNewCustomer ()

—

:CustomerForm :CustomerHandler

:Customer

User interface Domain classes

Other cases of the controller pattern will be used for each RMO use case.

Benefits and
Consequences:

Coupling between the view layer and the domain layer is reduced.
The controller provides a layer of indirection.

The controller is closely coupled to many domain classes.
If care is not taken, controller classes can become incoherent,
with too many unrelated functions.
If care is not taken, business logic will be inserted into the controller class.

Introduction to Systems Analysis and Design, 6th Edition

Use Case Realization with 44+
Sequence Diagrams

e Use case realization—the process of elaborating the
detailed design of a use case with interaction diagrams

e Two types of interaction diagrams
UML sequence diagram (emphasized in text)
UML communication diagram (also introduced)

e Sequence diagrams, aka use case realization
sequence diagrams, extend the system sequence
diagram (SSD) to show:

View layer objects
Domain layer objects (usually done first)
Data access layer objects

Introduction to Systems Analysis and Design, 6th Edition 10

- The external actor
Sta rt Wlth that interacts with The system object : ¢
the system (underlined)

System %
/f/z |

Sequence /

. Input message :
Dlag ram 1 :System

(SS D) Clerk

f
createNewCustomer (name, phones, email)

|

|

|

|

[

: (custlD, name, phones, email)
U ié__________________: A lifeline representing

Se Case I | | the timeline for

Create : enterAddress (address) H: the Dbjec/t)

i =

:% (updated address) I g
customer | =

I 17
account : enterCreditCard (cc-info) ‘J'

:% (updated cc-info) :

i

Return value or
output message

Introduction to Systems Analysis and Design, 6th Edition 1

Sequence Diagram to show View Layer

and Part of Problem Domain Layer

Lo

View layer class

:CustomerForm

Domain layer classes

«controllers»

Clerk :CustomerHandler
| | |
| | |
I I I
createNewCustomer (name, phones, email) 1
| |
I]
\ L createNewCustomer (name, phones, email)
I Activation lifeline ——— =
1 - ::_=,__-ac:=crealeNewCustc-mer (name, phones, email)
: Two ways to return data: L —
I t o
: as a value or a refurm message [= (custlD, name, phones, email) aC:Customer
: e e
|
| T SAL Insert
| enterAddress (address) 1 =
I enterAddress (address)
I enterAddress (address)
! (updated address)
! e ————— —
|
| am
| |
I I
I enterCreditCard (cc-info) =
I enterCreditCard (cc-info)
! enterCreditCard (cc-info)
: (updated cc-info)
I < —— — — — — — — — — —] =
: | |
|
|
|

12

Notes of Expanded Sequence Diagram | s¢

This is a two layer architecture, as the domain class
Customer knows about the database and executes SQL
statements for data access

Three layer design would add a data access class to handle
the database resulting in higher cohesiveness and loose
coupling

Note :CustomerForm is an object of the CustomerForm
class, :CustomerHandler is an object of the
CustomerHandler class playing the role of a controller
stereotype (both underlined becuase they are objects)

aC:Customer is an object of the Customer class known by
reference variable named aC

Note: the create message to aC:Customer points to the
object symbol to indicate create

Introduction to Systems Analysis and Design, 6th Edition 13

Overview of Detailed Design Steps
Shown previously in Chapter 10

Design Step Chapter
1. Develop the first-cut design class diagram showing navigation visibility. 10
2. Determine the class responsibilities and class collaborations for each use | 10

case using CRC cards.

3. Develop detailed sequence diagrams for each use case.
[a] Develop the first-cut sequence diagrams.

[b] Develop the multilayer sequence diagrams.

11

4. Update the DCD by adding method signatures and navigation information.

11

5. Partition the solution into packages, as appropriate.

11

Introduction to Systems Analysis and Design, 6th Edition

14

Create
Customer
Account
Use Case

Start with domain
model for
Customer
Account
Subsystem

Introduction to Systems Analysis and Design, 6th Edition

FriendLink Sale SaleTrans
customeri saleDateTime date
customer2 priorityCode transactionType
status S&H 1 - | amount
datelLinkedUp tax paymentMethod

totalAmt
mountainBucks
o
0+ - 0. CustPartnerCredit
amtRMOCredits
Customer amtPartnerCredits PromoPartner
name - name
mobilePhone . i , | address
homePhone 0.. ‘ 0.-* | contactPerson
emailAddress telephone
status 1 agreementDescription
Ut 1 1.*
To From Account
X X typeOfAccount
0.. 0.. creditCardNo
Message
0.1
date
messageText
1.* U
Address
number
street
city
state
zipcode

15

Create

Customer

Account

Use Case

First cut design
class diagram for

use case

Select needed

classes,
elaborate

attributes, add
controller, and
add navigation

visibility

«controller»
CustomerHandler

Customer

-accountNo:string {key}
-name:string
-mobilePhone:string
-homePhone:string
-emailAddress:string
-status:string

N

Account

000
0000
| X X X
r' W W
W
Address

-accountMo:string
-typeOfAccount:siring
-cardNumber:string
-expireDate:date
-comment:string

-accountMo:string
-typeOfAddress:string
-street1:string
-street2:string
-city:string
-state-province:siring
-country:string
-postalCode:string

Introduction to Systems Analysis and Design, 6th Edition

16

Create
Customer
Account
Use Case

First cut
sequence
diagram
expanding SSD,
adding controller,
and adding
needed classes

Introduction to Systems Analysis and Design, 6th Edition

Clerk

0000
0000
o000
«controller» :Customer -Address -Account
:CustomerHandler

| 1 | 1
I | I |
createNewCustomer I I I I
(name, phones, email) | | I 1
=i | I |
I | I |
1 | 1 |
1 | 1 |
I | I |
enterAddress (address) | | I |
= 1 1 |
1 | 1 |
I | I |
I | I |
1 | 1 |
enterCreditCard (cc-info) 1 [I |
= | I |
I | I |
1 | 1 |
I | I |
I | I |
I | I |

17

Create
Customer
Account
Use Case

Add messages

and activation to

complete
collaboration

This is just the
domain layer

These domain
classes handle
data access, so

this is a two layer

architecture

(name, phones, email)

-

{CustlD, name, phones, email)
‘: __________

«controllers

:CustomerHandler
|
1
Clerk I
| |
| |
1 |
createNewCustomer L

aC:=createNewCustomer (name, phones, email)

~| aC:Customer

T SQL Insert
1 —=
enterAddress (address)
= enterAddress (address) b
P .| aAdd:=createAddress (address)
{ __________ S
aAdd:Address
-
|
! SQAL Insert
enterCreditCard (cc-info) ——
= enterCreditCard (cc-info) . :
(updated cc-info) - aAcc:=createAccount (cc-info)
{ __________
ahAcc:Account
T B B
: I L SAL Insert
i | I
1 1

Introduction to Systems Analysis and Design, 6th Edition 18

Fill Shopping
Cart Use
Case

Start with domain
layer based on
activity diagram and
then SSD

Customer

System

Search for product

—
-1

Select options and |

Look at product
reviews

quantity

Search and view \ __

i

accessories

—

I

Select accessory
options and

Y
/1 Add to cart

quantity

-

(

/

L
| Add to cart

Introduction to Systems Analysis and Design, 6th Edition

19

000
0000
0000
o000
| X J
a
Fill Shopping
Cart Use
Customer :System
Case : :
| addltemToCart (promoNo, prodID, size, qty) |
. "
Start with domain : :
|ayer based on :{ (description, price, extendedPrice) :
activity diagram and | :
| |
then SSD : *addAccessoryToCart (promoMo, prodlD, size, qty) :
| i
I I
I I
| (description, price, extendedPrice) |
= S —
I I

Introduction to Systems Analysis and Design, 6th Edition 20

Fill Shopping
Cart Use
Case

First cut design
class diagram

Select classes,
elaborate attributes,
add navigation
visibility

Introduction to Systems Analysis and Design, 6th Edition

«controllers
CartHandler

Customer

OnlineCart

Cartitem

-accountMNo:string {key}
-name:string
-mobilePhone:string
-homePhone:string
-emailAddress:string{index}
-status:siring

-salelD:int {key}
-saleDateTime:date
-priorityCode:string
-S&H:currency
-tax:currency
-totalAmt:currency

-saleltemlid:int {key}
-productltem:string
-quantity:int
-soldPrice:currency
-shipStatus:string
-backOrderStatus:string

Inventoryltem

Productltem

PromoOffering

-productltem:string
-inventoryltem:int
-size:string

-color:string
-options:string
-quantityOnHand:int
-averageCost:currency
-reorderQuantity:int
-datelastOrder:date
-dateLastShipment:.date

-gender:string
-description:string
-supplier:string
-manufacturer:string
-picturelD:string

-regularPrice:currency
-promoPrice:currency

21

Fill Shopping

:CartHandler :Customer ‘Productitem

Customer T T
Cart Use e | |
(promoNo, prodiD, size, color, gty) | | :PromoOffering | | | :nventoryltem |
| | T | T
C a s e : [firstltem]createCart () laCn — createCart () : : :
| == A
[S [[[
addltemToCart			
(promoNo, prodID, size, color, qty) 1			
- | | | | |
First cut sequence . . o .
= = | | createCartltem | | |
d Iag ra m fo r d o m al n | | (promoMo, prodlD, size, color, gty) | | |
| | . ! | |
u | | price = getPr!ce () | |
F—=
layer. Will be three | | P
. I I escription := getDesc I() I
Iayer arCh Itectu re- : : statuls:= updateOlty (gty) :
! ! (description, price, extendedPrice)
(description, price, extendedPrice) (description, price, extendedPrice) —— —
[I 1 —

:CartHandler is) i
controller, other Loop foralffems /" i

addAccessoryToCart I

d o m a i n c I asses a re (;I)romol\lo. prodID size, colfr, qty)

- : addltemToCart ; createCartltem
I n c u e n | (promoNo, prodID, size, color, gty) (promoNo, predID, size, color, gty)
| I '
: : price := getll:'rice)
| ['
N t I f f | | description := getDesc ()
ote 100p 1Trame 10or | | '
| I status := updateQty (qty)
- L] l l I i
ad d I n g eac h Ite m to | o) I (description, price, extendedPrice) ! l
I {desecription, price, (description, price, extendedPrice) EN— ! !
| extendedPrice) -] | |
| |
| |
| |
| |
| |

cart. The SSD used * <————— | :
notation :

Introduction to Systems Analysis and Design, 6th Edition 22

Assumptions .

e Perfect technology assumption—First encountered for-use

cases. We don't include messages such as the user
having to log on.

e Perfect memory assumption—\We have assumed that the
necessary objects were in memory and available for the
use case. In multilayer design to follow, we do include the
steps necessary to create objects in memory.

e Perfect solution assumption—The first-cut sequence
diagram assumes no exception conditions.

e Separation of responsibilities—Design principle that
recommends segregating classes into separate
components based on the primary focus, such as user
interface, domain, and data access

Introduction to Systems Analysis and Design, 6th Edition 23

Developing a Multilayer Design o

e \View Layer
With users, there is always a view layer. Add forms or pages

e Data Access Layer

Persistent classes need some mechanism for storing and
retrieving their state from a database

Separate layer required when the business logic is complex
and there is a need to separate connection to database and
SQL from the domain classes.

Create customer account use case might not need a
separate layer as domain classes can handle data

Fill shopping cart is much more complex and does need it

For each domain class, add a data access class to get data
and save data about an instance

Introduction to Systems Analysis and Design, 6th Edition 24

Adding
Data
Access
Layer

Fill shopping
Cart use case

1
| :CartHandler | | aC:Customer | I
1 | :
Customer | 1 i
I 1
I 1 ; I
| aC := findCustomer (acctMo)
I > aC:= read;Cust (acctMNo)
|
addltemToCart I

(promoNo, predID,
size, color, gty)
1

(description, price, exte
;.% -

Introduction_to Systems Analysis and Design, 6th Edition

(description, price, extendedPrice)

aCrt := createCart

addltemToCart |
(premoNe, prodiD, size, color, gty)

I .
[firstitem]createCart{) OnlineCartDA

|:PromoOﬁeringDA|| :ProductiternDA ":InventoryltemDAl

| :PromoQffering |

'| :Productltem |
1

| :Inventoryltem | !
1
T

0

1 |
| 1 :CartltemDA
| createCartltemn

Mes——————— — —
ndedPrice) 1

i

[
(pmmol\fo. predID, size, color, gty)
aCl:Cartltem ; :
| (-
| findPromo (promolD, prodiD)
I |~ readPO ()
! T
1 . L |
| price := getPrice ()
| —|—)]
I 1
1
: findProditem (prodiD)
I I 1 "Jl | readProd ()
1
: '] |
| description := getDesc () __JI
' oy 1
1 1
| 1 I I
I 1 findinvitem (prodID, size, color)
| — =
1 1
! Iy I
| I 5 |
| I status:= updateQty (gty) 1
| T 1
ription, price, extendedPrice) | : : 1
Ee=d== : | 1
1 saveCartlitem (aCl) X |
saveCart (aCrt) LI 1 | | !
— L ! l
~ 1 1
1 1 1 1 . 1

readlnv ()

25

Data Access Notes :

e :CartHandler findCustomer(acctNO) message to Customer
class means Customer should create a new instance
named aC, send a message to :CustomerDA asking it to
read info from the database for a customer with that
account number, and then populate the new customer
instance with the attribute values from the database.

e The other times a domain object is needed, a similar
pattern is used, such as when needing information from
:PromoOffering, :Productltem, :Inventoryltem from each
:Cartltem to display in the :OnLineCart. :PromoOfferingDA,
:ProductltemDA, and :InventoryltemDA are asked to find
the data and populate the instances.

e :Cartltem and :OnlineCart ask DA classes to save them

Introduction to Systems Analysis and Design, 6th Edition 26

Adding
View Layer

Fill shopping
Cart use case

Sequence
diagram just
shows View
interaction with
the controller

View classes
don’t need to
even know about
the domain or

data access layer

«views
:SearchltemWindow

Customer |
| additemToCart I
I (promoNo, prodID, size, color, gty)
I

additemToCart
(promoNo, protIiID. size, color, gty)

“Views
:DisplayltemWindow

|
(description, price, extendedPrice)

«Views
ViewAccessWindow

|
addAccessoryToCart |

I
I
|
|
I
|
|
I
I
|
|
; (promoMo, prodID, size, color, qty)

(o] 0000

|-

«vigws

:AdditemW

5

indow

I

I

|

|

I

|

|

|

I

|

|

I
addltemToCart e
(promoNo, prodID, size, color, gty)

(description, price, extendedPrice)

«VieW»
:CustlLoginWindow

custinfo := requestCustiD ()

addAccessoryToCart
(promoNo, prodID, size, color, qty)

wyiews
:Displayltem+AccessWindow

(description, price, extendedPrice)

-
|
|
1
|
|
|
1
|
|
1
1
|
|
1
|
|

:AddAccessWindow |
|
1
addAccessoryToCart |
(promoNo, prodID, size, color, qty)]
|
1
1
|
: (description, price, extendedPrice)
———— e e e e e e — — — —
|
1
1
|
|

-—-1

Introduction to Systems Analysis and Design, 6th Edition

27

000
u u u u u
Designing with UML Communication | eese
. | X J
Diagrams o
e Shows the same information as a sequence diagram
e Symbols used in a communication diagram:
An object that
An actor who sends receives a message
the initial message and sends other
/ messages
1: firstMessage () 2: secondMessage ()
— :Object — :Object2
A <
4: finalResponse U\ 3: returnMessage ()

Actor

A link between A message arrow and

symbols that send or descriptive name

receive messages

28

Introduction to Systems Analysis and Design, 6th Edition

Communication Diagram for Fill oo
Shopping Cart Use Case

e This diagram should match the domain layer sequence
diagram shown earlier

e Many people prefer them for brainstorming

1.2.1:createCartltem
(promoMo, prodID,

1.2:addltemToCart size, color, qty)
(promoMo, prodiD, .
size, color, qty) :OnlineCart :Cartltem
1:addltemToCart
(promoNo, prodID, /
size, color, qty) 1.2.1.1:price := getPrice () 1.2.1.3:status := updateQty (qgty)
:CartHandler T 1.1.1:aCrt := createCart (\L \
Customer \ /1.2.1.2:descripti0n = getDesc ()
[firstltem]1.1:createCart () :Customer :PromoOffering :Productltem :Inventoryltem

Introduction to Systems Analysis and Design, 6th Edition 29

Updating the Design Classes

e Design class diagram (DCD)
focuses on domain layer

e \When an object of a class
receives a message, that
message becomes a method
in the class on the DCD

e If :Inventoryltem receives the
message updateQty(qty), then
a method signature is added to
Inventoryltem:

Inventoryltem

-productltem:string
-inventoryltem:int
-size:string

-color:string
-options:string
-quantityOnHand:int
-averageCost:currency
-reorderQuantity:int
-dateLastOrder.date
-dateLastShipment:date

+updateQty (qgty):string

Introduction to Systems Analysis and Design, 6th Edition

30

Updated
Design Class
Diagram for
Domain Layer

After Create customer
account use case and
Fill shopping cart use
case

«controller»
CustHandler

«controllers
CartHandler

+addltemToCart (promoNo, prodiD,
invID, size, color, gty)

+createNewCustomer (name, phones, email)

+enterAddress (address)
+enterCreditCard (cc-info)

+addAccessToCart (promoNo, prodiD,
inviD, size, color, gty)

Account

-accountNo:string
-typeOfAccount:siring
-cardNumber:siring

Customer

-accountNo:string {key}

-name:string
-mobilePhone:string

-expireDate:date
-comment:string

+createAccount(cc-info)

—

Address

-accountMo:string
-typeOfAddress:string
-street1:string
-street2:string
-city:string
-state-province:string
-country:string
-postalCode:string

+CreateAddress (address)

-homePhone:string
-emailAddress:stringf{index}
-status:string

+createNewCustomer ()

Cartitem +enterAddress (address)
-saleltemid:int {key) :g?;g{géi?{t?f‘rd (cc-info)
-productitem:string
-quantity:int
-soldPrice:currency <
-shipStatus:string
-backOrderStatus:string OnlineCart

-salelD:int [key}
+createCartltem (promolD, -saleDateTime:date
InvID, size, color, qty) -priorityCode:string
-S&H:currency
~taxzcurrency

L | -totalAmt:currency

+createCart ()
+addltemToCart (promolD,
inviD, size, color, qty)

\

v

Inventoryltem Productitem PromoOffering
-productltem:string -gender:string -regularPrice:currency
-inventoryltem:int -description:string -promoPrice:currency

-size:string

-color:string
-options:string
-quantityOnHand:int
-averageCost:currency
-reorderQuantity:int
-datelLastOrder:date
-dateLastShipment:date

-supplier:string
-manufacturer:string
-picturelD:string

+getPrice ():currency

+updateQty (qty):string

+getDesc ():string

Introduction to Systems Analysis and Design, 6th Edition

31

Structuring
Components
with UML
Package
Diagram

Three layer package
diagram after two
RMO use cases

Dashed line is
dependency

Note: Java package
or .NET namespace

View Layer

SearchltemWindow

— — AddltemWindow

— — AddAccessWindow

ViewAccessWindow

Displayltem+AccessWindow

DisiplayltemWindow

Domain Layer

— o —
|
|
|
|
|

CustLoginWindow |
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VYV

OnlineCartDA

CartltemDA

CartHandler CustomerHandler
Customer
OnlineCart Address
— > Cartltem Account
PromoOffering Productltem Inventoryltem |j<— — L
!
Data Access Layer \,1,'
CustomerDA PromoOfferingDA

ProductltemDA

InventoryltemDA

Introduction to Systems Analysis and Design, 6th Edition

RMO Subsystem Package Diagram

Customer Account Subsystem |

Sales Subsystem |
View Layer |
SearchitemWindow		ViewAccessWinodw
AddltemWindow		Displayltem+AccessWindow
AdoAccesswindow		Disiplayttemwindow
CustLoginWindow		
Domain Layer		
CartHandler		Returnltem
OnlineCart		Sale
Cartitem		Saleliem
Data Access Layer		
CustomerDA		PromoOfferingDA
OnlineCartDA		ProductitemDA
CartltemDA		InventoryltemDA

customertandier		FamiyLink
cusomer	[Message	
Adoress	[suggestion	
Account	[custPartnercredt]	

Order Fulfillment Subsystem |

Shipment | | Shipper |

Marketing Subsystem |

| Promopartner | | Productitem |

| Promotion | | Inventory ltem |

PromoOfiering

Reporting Subsystem |

Introduction to Systems Analysis and Design, 6th Edition 33

Implementation Issues 4
Three Layer Design

e View Layer Class Responsibilities
Display electronic forms and reports.

Capture such input events as clicks, rollovers,
and key entries.

Display data fields.

Accept input data.

Edit and validate input data.

Forward input data to the domain layer classes.
Start and shut down the system.

Introduction to Systems Analysis and Design, 6th Edition 34

Implementation Issues 4
Three Layer Design

Domain Layer Class Responsibilities
Create problem domain (persistent) classes.
Process all business rules with appropriate logic.
Prepare persistent classes for storage to the database.

Data Access Layer Class Responsibilities
Establish and maintain connections to the database.
Contain all SQL statements.

Process result sets (the results of SQL executions) into
appropriate domain objects.

Disconnect gracefully from the database.

Introduction to Systems Analysis and Design, 6th Edition 35

More Design Patterns :

e Adapter
Like an electrical adapter

Place an adapter class between your system and an
external system

e Factory

Use factor class when creation logic is complex for a
set of classes

e Singleton

Use when only one instance should exist at a time
and is shared

Introduction to Systems Analysis and Design, 6th Edition 36

Adapter
Design
Pattern

Name:

Adapter

Problem:

A class must be replaced, or is subject to being replaced, by another standard
or purchased class. The replacing class already has a predefined set of method
signatures that are different from the method signatures of the original class.
How do you link in the new class with a minimum of impact so that you don't
have to change the names throughout the system to the method names in

the new class?

Solution:

Write a new class, the adapter class, which serves as a link between the original system
and the class to be replaced. This class has method signatures that are the same as
those of the original class (and the same as those expected by the system). Each method
then calls the correct desired method in the replacement class with the method signature.
In essence, it “adapts” the replacement class so that it looks like the original class.

Example:

There are several places in the RMO system where class libraries were purchased to
provide special processing. These purchased libraries provide specialized services
such as tax calculations and shipping and postage rates. From time to time, these
service libraries are updated with new versions. Sometimes a service library is even
replaced with one from an entirely different vendor. The RMO systems staff applies
protection from variations and indirection design principles by placing an adapter

in front of each replaceable class.

«interface»

Systemn TaxCalculatorlF

\ 4

getSTax ()
getUTax ()
-
TaxCalcAdapter ABCTaxCalculator

—
-

getSTax () findTax1 ()

getUTax () findTax2 ()

Benefits and
consequences:

The adaptee class can be replaced as desired. Changes are confined to the adapter
class and do not ripple through the system.

Two classes are defined, an interface class and the adapter class.

Passed parameters may add more complexity, and it is difficult to limit changes to
the adapter class.

Introduction to Systems Analysis and Design, 6th Edition

37

Factory
Design
Pattern

Name:

Factory or Factory Method

Problem:

Who should be responsible for creating utility type objects that do not specifically
belong to the problem domain classes? These utility objects may also be accessed
from various places within the system, so a given object may need to be instantiated
from several classes.

Solution:

Create an artifact that is a factory class. lts responsibility is only to instantiate utility
classes. In many situations, only one instance of a particular utility class is allowed.
Hence, all classes that need access to the class come through the factory. The
factory ensures that only one instance is created.

Example:

Several places in the RMO system need to get data from an Order object and need
to have a reference to an Order_DA [data access] object. The Order_DA object may
or may not already have been instantiated. A data access factory is defined and an
interface is created. The requesting object uses the methods defined in the interface
to request the reference to the Order_DA object. It then can read the database

of orders.

:System «USes» Order_DA

Customer

Order «requiresDA»

|

«interface»
DAFactory_iF

Shipment

getOrder_DA ()
getCustomer_DA ()
getShipment_DA ()

AN
public synchronized Order_DA getOrder_DA () { :

«Creates»

if (myODA == null) {

myODA = new Order_DA (); DAFactory

t
return myODA;

\\\ -myCDA: Customer_DA

“, -myODA: Order_DA
F Y -mySAD: Shipment_DA

\ getOrder_DA ()
getCustomer_DA (
getShipment_DA (

Benefits and
Consequences:

Higher cohesion of problem domain classes
Less coupling between business logic layer and data layer
Smaller, more maintainable classes

Introduction to Systems Analysis and Design, 6th Edition

38

Singleton

Design
Pattern

Name:

Singleton

Problem:

Only one instantiation of a class is allowed. The instantiation (new) can be
called from several places in the system. The first reference should make a
new instance, and later attempts should return a reference to the already
instantiated object. How do you define a class so that only one instance is
ever created?

Solution:

A singleton class has a static variable that refers to the one instance of itself.

All constructors to the class are private and are accessed through a method

or methods, such as getinstance(). The getinstance() method checks the variable;
if it is null, the constructor is called. If it is not null, then only the reference to

the object is returned.

Example:

In RMO's system, the connection to the database is made through a class called
Connection. However, for efficiency, we want each desktop system to open

and connect to the database only once, and to do s0 as late as possible. Only
one instance of Connection—that is, only one connection to the database—is
desired. The Connection class is coded as a singleton. The following coding
example is similar to C# and Java:

Class Connection
{
private static Connection conn = null;
public synchronized static getConnection ()
{
if {conn == null) {
conn = new Connection { };}
return conn;

}

Anocther example of a singleton pattern is a utilities class that provides services for the system,
such as a factory pattern. Because the services are for the entire system, it causes confusion if
multiple classes provide the same services.

An additional example might be a class that plays audioc clips. Since only one audio clip should
be played at one time, the audio clip manager will control that. However, for this to work, there
must be only one instance of the audio clip manager.

Benefits and
consequences:

There are other times when only one instance of an object is needed, but if it is instantiated from
only one place, then a singleton may not be required. The singleton object controls itself

and ensures that only one instance is created—no matter how many times it is called and
wherever the call occurs in the system.

The code to implement the singleton is very simple, which is one of the desirable characteristics
of a good design pattern.

Introduction to Systems Analysis and Design, 6th Edition

39

Summary T

e This chapter went into more detail about use case realization
and three layer design to extend the design techniques from
last chapter

e Three layer design is an architectural design pattern, part of
the movement toward the use of design principles and
patterns.

e Use case realization is the design of a use case, done with a
design class diagram and sequence diagrams. Using
sequence diagrams allows greater depth and precision than
using CRC cards.

e Use case realization proceeds use case by use case (use
case driven) and then for each use case, it proceeds layer by
layer

Introduction to Systems Analysis and Design, 6th Edition 40

Summary (continued) o

Starting with the business logic/domain layer, domain classes
are selected and an initial design class diagram is drawn.

The systems sequence diagram (SSD) from analysis is
expanded by adding a use case controller and then the
domain classes for the use case.

Messages and returns are added to the sequence diagram as
responsibilities are assigned to each class.

The design class diagram is then updated by adding methods
to the classes based on messages they receive and by
updating navigation visibility.

Simple use case might be left with two layers if the domain
classes are responsible for database access. More complex
systems add a data access layer as a third layer to handle
database access

Introduction to Systems Analysis and Design, 6th Edition 41

Summary (continued)

e The view layer can also be added to the sequence diagram to
show how multiple pages or forms interact with the use case
controller.

e The UML communication diagram is also used to design use
case realization and it shows the same information as a
sequence diagram.

e The UML package diagram is used to structure the classes
into packages, usually one package per layer. The package
diagram can also be used to package layers into subsystems.

e Design patterns are a standard solutions or templates that
have proven to be effective approaches to handling design
problems. The design patterns in this chapter include
controller, adapter, factory, and singleton

Introduction to Systems Analysis and Design, 6th Edition

42

