Chapter 10
Object-Oriented Design Principles

Dr. Supakit Nootyaskool
Faculty of Information Technology

King Mongkut’s Institute of Technology Ladkrabang

Outline

» Object-oriented design: bridging from analysis to
implementation

» Object-oriented architectural design

» Fundamental principles of object-oriented detailed
design

» Design classes and the design class diagram

» Detailed design with CRC cards

» Fundamental detailed design principles

Learning objective

» Explain

the purpose and objective of object oriented
design

some of the fundamental principles of object-
oriented design

» Develop
UML component diagrams

design class diagrams

» Use CRC cards to define class responsibilities
and collaborations

10.1 Object-oriented design:
Bridging from analysis to implementation

» OOD is a process by which a set of detailed OOD
models are build and then used by the programmer to
write and test the new system.

» An object-oriented programming (OOP) is a set of the
program by using the concept of object representation.

Stdt
||||||||||

e \ -Three objects
"o %% D otiect - User interface object

Updatesuden - Problem domain object

nnnnnnnnnn

- Data access object

window

4 4:..&@,5.,"3. -A multilayer architecture by
1. Enter student ID. information updates. The ObJeCt don,t need to eXlst
i on the same system

UML requirement VS.

Design models

» ldentify

All the classes or things

Elementary business..

process

Necessary step to carry
out a use case

Describe document the
internal workflow of each
use case

Related activity diagram
show message or data
between user and system

Track all status of all
condition requirement for
a class.

NEE

Requirements models

Customer

Order

Domain model class diagram

Create
new order

Use case diagrams

Clerk

System

Enter
data

Display
order

Activity diagrams and use

case description

Clerk

System sequence dlagrams

Ready Shlpped

Requirements state machine

diagrams

=1

Design models

server

Intemet g]

Application 1]

server

Component diagrams

Client
computer

Network
computer

Deployment diagrams

Customer

name

Order

changeName()

orderlD

shipOrder()

Design class diagrams

I :Controller I I :Customer
Clerk ' '
: ' ; U

Interaction diagrams (sequence

diagrams)

G

Design state machine diagrams

—
View layer |~ ===~~~ Data layer
Package diagrams

Requirements models

Customer Order

Domain model class diagram

Create
new order
Clerk

Use case diagrams

Clerk System —

_

Activity diagrams a-nd use
case description

v |¥
3

System sequence diagrams

e

Requirements state machine
diagrams

Design models

Intemet) Application]
server server

Component diagrams

Client Network
computer computer

Deployment diagrams

Customer Order

name > orderlD
changeName() shipOrder()
Design class diagrams

| :Controller | | :Customer |

Clerk

|

l

Interaction diagrams (sequence
diagrams)

Design state machine diagrams

—

View layer [~======= >>| Data layer

Package diagrams

10.2 Object-oriented architectural design

» The first step in system design is architectural design
The system will be deployed
Web app.
Win app.
Software system

Single user system — example spreadsheet, sample
accounting .,..

Enterprise-level system

Client server architectures
Network based system
Internet based system

10.2 Object-oriented architectural design (2)

» Enterprise-level system

» A system that has shared resources among multiple people or
groups in an organization

» Option are client-server or internet based
» Each presents different issues

State “Stateful” or state-based system—e.g.,| Stateless system—e.q.,
client/server connection is long term. | client/server connection is
not long term and has no
inherent memory.

Client configuration | Screens and forms that are Screens and forms are
programmed are displayed directly. displayed only through a
Domain layer is often on the client or | browser. They must conform

split between client and server to browser technology.
machines.

Server configuration | Application or data server directly Client tier connects
connects to client tier. indirectly to the application

> server through a Web server.

10.2.1
Component diagram for architectural design

» Component diagram

A type of design diagram that shows the overall system
architecture and the logical components within it for how the
system will be implemented

|dentifies the logical, reusable, and transportable system
components that define the system architecture

The essential element of a component diagram is the
component element with its API.

» Application program interface (API)

The set of public methods that are available to the outside
world

10.2.1
Component diagram for architectural design

UML component diagram notation L

Component

Socket-Uses

input PN

T

—

=]

«component»
InventoryDatabaseSystem

=

Socketusing |

Port API

0

«component»
InventoryUpdateSubsystem

«component»
InventoryQuerySubsystem

Port—-API output

Q

interface

| Alternative socket-

port connection
notation

10.2.1
Component diagram for architectural design

UML webpage notation

10.2.1
Component diagram for architectural design

Component diagram showing two-layer internet architecture

User Interface Layer Domain Layer

(Business Logic)

I
I
I
I
: Common g /FT
input data Gateway s
Interface (CGl)
I
Browser g Internet g |
\
I

_ request/

(with cookies) Server
repl
ply Application g
lasieras ’ o Server
isplays lonuor n? a» (session mgr)
«frameset» /
Page

Applet —
. PHP ‘
ActiveXControl ASP %)D
JSP
Serviets

ColdFusion

|
|
|
|
|
|
N e
VBScript |
|
|
|
|
|

10.3 Fundamental principles of the object-
oriented detailed design

Requirements models

rrrrr

Activity diagrams and use
case description

Design models

lllllll

i :System |

Clerk

—_—

System sequence diagrams >

Interaction diagrams (sequence
diagrams)

Requirements state machine
diagrams

(neady>—>(smppec9

Design state machine diagrams

» Both the design class diagram
and the interaction diagram

are the most important for
detail design

10.3 Fundamental principles of the object-

° ° ° equirements models Design models
oriented detailed design =
- g
Domain model student -
Domain diagram Student —
Student %
studentiD M*)
name s e
address
dateAdmitted (D) = o= A
lastSemesterCredits dagrams Package dagrams
lastSemesterGPA . .
fotalCreciitiours Design class diagram student
otalGPA
major Design class diagram Student
Student

Fmee :StudentUpdController

changeName (studentlD, name)

Sequence diagram for updating student name

:Student

-studentID: integer {key}
-name: string

-address: string
-dateAdmitted: date
-lastSemesterCredits: number
-lastSemesterGPA: number
-totalCreditHours: number
-totalGPA: number

-major: string

Elaborated
attributes

changeName (name)

————g---
|
:
i
|
I
I
I
|
I
|
|
|
|
I
I
I
I

1

+createStudent (name, address, major): Student
+createStudent (studentlID): Student
+changeName (name)

+changeAddress (address)
+changeMajor (major)

+getName () : string

+getAddress () : string

+getMajor () : string

+getCreditHours () : number
+updateCreditHours ()

+findAboveHours (int hours): studentArray

/ Method signatures

Write the code for the design class to
implement (Java) o i

//attributes
private int studentID;
private String firstName;
private String lastName;
. . private String street:
Design class diagram student
private String state;
private String =zipCode;
Design class diagram Student private Date dateAdmitted;
private float numbercCredits;
private S5tring lastActiveSemester:
Student private float lastZctiveSemesterEPA;

private float gradePointAwverage;

private String major;
-studentlD: integer {key}
-name: string //constructors

. H =
-address: string public Student (String inFirstWame, String inLastName, String insStreet,

-dateAdmitted: date String inCity, String inState, String inZip, Date inDate)
-lastSemesterCredits: number

-lastSemesterGPA: number : firstName - inFirstName;
-totalCreditHours: number lastName = inLastName;
-totalGPA: number .
-major: string }

m public Student (int inStudentID)
+createStudent (name, address, major): Student {
+createStudent (studentlD): Student //read database to get values
+changeName (name) }

+changeAddress (address)
+changeMajor (major)
+getName () : string
+getAddress () : string

//get and set methods
public String getFullName ()

ol S {
+g::gl’aejgrﬂ€12)ufstn(n)g Giinber return firstName + " " + lastName;
+! I 3
. }
I;i‘sgitbeoc\;ee}?:r;uﬁt(gours - sludentArra public void setFirstName (String inFirstName)
HindAbovetiours (jnt hours): studenArmay {
firstName = inFirstName;
}
public float getGPA ()
{
return gradePointAwverage;
}

J//and so on

//processing methods

public void updateGDA ()
//access course records and update lastActiveSemester and
//Co-date credits and GPR

Write the code for the design class to
implement (VB.NET), . . v

'attributes
Private studentID As Integer
Private firstName As String
Design class diagram student e
g g Private street As String
Private city As String
Private state As String
Private zipCode As String
Private dateAdmitted As Date
Student Private numberCredits As Single
Private lastActiveSemester As String
- Private lastActiveSemesterGPA As Single
-studentiD: integer {key} Private gradePointAverage As Single

-name: string R : :
-address: string Private major As String

-dateAdmitted: date
-lastSemesterCredits: number
-lastSemesterGPA: number
-totalCreditHours: number
-totalGPA: number

-major: string

Design class diagram Student

'constructor methods
Public Sub New(ByVal inFirstName As String, ByVal inLastName As String,
ByVal inStreet As String, ByVal inCity As String, ByVal inState As String,
ByVal inZip As String, ByVal inDate As Date)
firstName = inFirstName
lastName = inLastName

+createStudent (name, address, major): Student
+createStudent (studentlD): Student
+changeName (name)

+changeAddress (address)

+changeMajor (major)

+getName () : string

End Sub

Public Sub New (ByVal inStudentID)
'read database to get values

+getAddress () : string i End Sub
+getMajor () : string
+getCreditHours () : number 'get and set accessor methods
+updateCreditHours () Public Function GetFullName() As String
+findAboveHours (int hours): studentArray Dim info As String

info = firstName & " " & lastName

Return info

End Function

Public Property firstName()

Get
Return firstName

End Get
Set (ByVal Vvalue)
firstName = Value
End Set

End Property

10.3.1 Object-oriented design process

1. Develop the first-cut design class diagram showing navigation visibility. 10

2. Determine class responsibilities and class collaborations for each use 10
case using class-responsibility-collaboration (CRC] cards.

3. Develop detailed sequence diagrams for each use case. 11
(a) Develop the first-cut sequence diagrams.
[b] Develop the multilayer sequence diagrams.

4. Update the design class diagram by adding method signatures and 11
navigation information using CRC cards and/or sequence diagrams.

5. Partition the solution into packages as appropriate. 11

10.4.1 Design class symbols (1)

» stereotype is a notation that uses to categorize a model
element as a certain type. Itis placed in << >>

» persistent class an class whose objects exist after a
system is shut down (data remembered)

10.4.1 Design class symbols (2)

4

entity class a design identifier for a
problem domain class (usually persistent)

control class a class that mediates
between boundary classes and entity
classes, acting as a switchboard between
the view layer and domain layer

boundary class or view class a class that
exists on a system’s automation
boundary, such as an input window form
or Web page

data access class a class that is used to

retrieve data from and send data to a
database

(tentityn
Customer

«control»
UseCaseHandler

«boundary»
OrderWindow

«dataAccess»
OrderDBReader

(J

Customer

O

UseCaseHandler

O

OrderWindow

o

OrderDBReader

Example UML design class symbols

ATM % __}—O O

transfer funds

Account Holder user interface
$ HO O — O
Bank bank interface withdraw funds ES ks ene

<
<<boundary>> " enl
<<actor>> boundary 1 <<contral>> /f__‘_,__
e i Actorl controller 1
entityl =4
Actor1 v1

entity 2
<<boundary>> s
<<actor>> boundary 2 (:" :ID 3
| Actor2 consrolien
A ocundary 2 controller 2

Ref: http://www.cs.sjsu.edu/~pearce/modules/patterns/enterprise/ecb/ecb.htm

10.4.2
Notation for a design class

» Syntax for name, attributes, and methods

«Stereotype Name»
Class Name::Parent Class

Attribute list
visibility name:type-expression = initial-value {property}

Method list
visibility name (parameter list): return type-expression

10.4.2
Notation for design classes

» Attributes

Visibility—indicates (+ or -) whether an attribute can be
accessed directly by another object.

private (-) not visibility
public (+) visibility
Attribute name—Lower case camelback notation
Type expression—class, string, integer, double, date
Initial value—if applicable the default value
Property—if applicable, such as {key}
Examples:
- accountNo: String {key}
- startinglobCode: integer = 0|

10.4.2
Notation for design classes

» Methods

Visibility—indicates (+ or -) whether an method can be
invoked by another object.

private (-) not visibility

public (+) visibility
Method name—Lower case camelback, verb-noun

Parameters—uvariables passed to a method
Return type—the type of the data returned
Examples:

+setName(fName, IName) : void (void is usually let off)

+getName(): string (what is returned is a string)
-checkValidity(date) : int (assuming int is a returned code)

10.4.2
Notation for design classes

» Class level method—a method that is
associated with a class instead of with
objects of the class, Underline it.

+findStudentsAboveHours(hours):
Array

» Class level attribute—an attribute
that contains the same value for all
object in the system. Underline it.

-noOfPhoneSales: int

» Abstract class— class that can
instantiated.

Only for inheritance. Name in ltalics.

» Concrete class—-class that can be
instantiated. ~

Design class diagram Student

Student

-studentlD: integer {key}
-name: string

-address: string
-dateAdmitted: date
-lastSemesterCredits: number
-lastSemesterGPA: number
-totalCreditHours: number
-totalGPA: number

-major: string

+createStudent (name, address, major): Student
+createStudent (studentlD): Student
+changeName (name)

+changeAddress (address)
+changeMajor (major)

+getName () : string

+getAddress () : string

+getMajor () : string

+getCreditHours () : number
+updateCreditHours ()
+findAboveHours (int hours): studentArray

Sale Customer
-salelD: int {key} -accountNo: string {key}
-saleDate: date -name: string
-priorityCode: string -billingAddress: string
-shipping&Handling: float -shippingAddress: string
-tax: float . -dayPhone: string
-grandTotal: float 0. 1.1 -nightPhone: string
+additem () +updateName ()
+cancelSale () +updateAddress ()
+makePayment () +processSale ()
IntermetSale StoreSale

-URLaddress: string -storelD: string
-timeOfDay: string -noOfStoreSales: int

E -timeToOrder: int

-noOfPhoneSales: int -noOfWebSales: int
+confirmEmail () +cancelSale ()

10.4.2
Notation for design classes

» Navigation Visibility
The ability of one object to view and interact with another
object
Accomplished by adding an object reference variable to a class.

Shown as an arrow head on the association line—customer
can find and interact with sale because it has mySale reference

variable

Customer Sale
-accountNo: string {key} -salelD: int {key}
-name: string -saleDate: date
-billingAddress: string -priorityCode: string
-shippingAddress: string | -shipping&Handling: float
-dayPhone: string -tax: float
-nightPhone: string -grandTotal: float

-mySale: Sale

Navigation visibility guidelines

» One-to-many associations that indicate a
superior/subordinate relationship are usually navigated
from the superior to the subordinate

» Mandatory associations, in which objects in one class
can’t exist without objects of another class, are usually
navigated from the more independent class to the
dependent

» When an object needs information from another object, a
navigation arrow might be required, pointing either to the
object itself or to its parent in a hierarchy.

» Navigation arrows may be bidirectional.

First cut design class diagram

» Proceed use case by use case, adding to the diagram

» Pick the domain classes that are involved in the use case
(see preconditions and post conditions for ideas)

» Add a controller class to be in charge of the use case

» Determine the initial navigation visibility requirements
using the guidelines and add to diagram

» Elaborate the attributes of each class with visibility and
type
» Note that often the associations and multiplicity are

removed from the design class diagram as in text to
emphasize navigation, but they are often left on

Start with domain class diagram

RMO sales

subsystem

Promotion
season
year
description
startDate -
endDate PromoOffering
_.| price
______ specialPrice
e e
_______ Customer
0. accountNo {key}
Productltem SaleTrans gﬁnﬁ?\g Addisss
productiD {key} date shippingAddress
vendor transactionType dayPhone
gender amount nightPhone
description paymentMethod
15 3
1
0. 0.
Inventoryltem Sale
inventorylD {key} Saleltem 1 salelD {key}
Slzle 0.* qqantity saleDate
color — price ioritvCod
: 1 riorityCode
options / backorderStatus N ghippti}rllg&Handling
quantityOnHand 1 tax
averageCost grandTotal
reorderQuantity

Create first cut design class diagram

» Use case create

phone sale with
controller added

«controller»
SaleHandler

Customer

Sale

Saleltem

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-salelD: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

-saleltemID: int {key}
-quantity: int

-price: float
-backorderStatus: string

PromoOffering

Productltem

Inventoryltem

-price: float
-specialPrice: float

-productlD: string {key}
-vendor: string
-gender: string
-description: string

-inventorylD: string {key}
-size: string

-color: string

-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

10.5 Design with CRC cards

» CRC Cards—<Classes, Responsibilities, Collaboration
Cards help to identify responsibilities of the class and the
set of classes.

» Usually a manual process done in a brainstorming session
3 X 5 note cards
One card per class

Front has responsibilities and collaborations
Back has attributes needed

o

xample of CRC card

Responsibilities

Class name
update nowne Sade (ID)
update address Payment (ID)
request purchase
history
process sale
make paymenty

Collaborating classes
with return data

Attributes on back

customerNo-
customerNowme
customerAddress

ddresy
shippingA

CRC cards procedure

4

Because the process is to design, or realize, a single use
case, start with a set of unused CRC cards.Add a
controller class (Controller design pattern).

|dentify a problem domain class that has primary
responsibility for this use case that will receive the first
message from the use case controller. For example, a
Customer object for new sale.

Use the first cut design class diagram to identify other
classes that must collaborate with the primary object
class to complete the use case.

Have use case descriptions and SSDs handy

CRC card procedure (2)

» Start with the class that gets the first message from the
controller. Name the responsibility and write it on card.

» Now ask what this first class needs to carry out the
responsibility. Assign other classes responsibilities to
satisfy each need.WVrite responsibilities on those cards.

» Sometimes different designers play the role of each class,
acting out the use case by verbally sending messages to
each other demonstrating responsibilities

» Add collaborators to cards showing which collaborate
with which.Add attributes to back when data is used

» Eventually, user interface classes or even data access
classes can be added

CRC cards results
several use cases

update informatior| Sale Item provide price

CRC cards results
Adding in user interface layer

update name | Sale

input Salettandler
update address| Transaction

itemvdatie | Saletandler
: ’ process sale
m iemy request history

Sale Itewv provideprice

handle new Customer

sale Sale
Saleltem

T | oy

CRC cards

» Update design
class diagram

based on CRC
results

» Responsibilities
become methods
» Arguments and

return types not
yet added

«controller»
SaleHandler

+processNewSale ()
+addltemsToSale ()
+makePayment ()

\

I

SaleTransaction

-transactionlD: int {key}
-saleDate: date
-transactionType: string
-amount: float
-payMethod: string

+processPayment ()

Customer

Sale

Saleltem

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-salelD: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

-orderltemlID: int {key}
-quantity: int

-price: float
-description: string
-backorderStatus: string

+updateName ()
+updateAddress ()
+processSale ()
+requestHistory ()

+addltem ()
+updatelnformation ()
+requestShipping ()
+updateStatus ()
+cancelSale ()
+makePayment ()

+updatelnformation ()
+cancelltem ()
+requestBackorder ()

\

PromoOffering

Productitem

Inventoryltem

-cataloglD: string {key}
-productlD: string {key}
-price: float
-specialPrice: float

-productlD: string {key}
-vendor: string
-gender: string
-description: string

-inventorylD: string {key}
-size: string

-color: string

-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

+getPrice ()

+getDescription ()

+updateQOH ()

10.6 Fundamental design principle
» Coupling

A quantitative measure of how closely related classes are linked (tightly
or loosely coupled)

Cohesion

A quantitative measure of the focus or unity of purpose within a single
class (high or low cohesiveness)

Protection from variations

A design principle that states parts of a system unlikely to change are
separated (protected) from those that will surely change

v

A 4

» Indirection
A design principle that states an intermediate class is placed between
two classes to decouple them but still link them

» Object responsibility

A design principle that states objects are responsible for carrying out
system processing (Knowing and Doing)

Summary

<
<
<
<
<

Architectural design

Detail design of software proceeds
Detailed design models.

Design class diagrams

Key issues are attribute elaboration and adding methods.
Method signatures include visibility, method name,
arguments, and return types.

abstract vs. concrete classes, navigation visibility, and class
level attributes and methods,

CRC Cards technique

