
Chapter 10
Object-Oriented Design Principles

Dr. Supakit Nootyaskool

Faculty of Information Technology

King Mongkut’s Institute of Technology Ladkrabang

Outline

 Object-oriented design: bridging from analysis to

implementation

 Object-oriented architectural design

 Fundamental principles of object-oriented detailed

design

 Design classes and the design class diagram

 Detailed design with CRC cards

 Fundamental detailed design principles

Learning objective

 Explain

 the purpose and objective of object oriented

design

 some of the fundamental principles of object-
oriented design

 Develop

 UML component diagrams

 design class diagrams

 Use CRC cards to define class responsibilities

and collaborations

10.1 Object-oriented design:
Bridging from analysis to implementation

 OOD is a process by which a set of detailed OOD

models are build and then used by the programmer to

write and test the new system.

 An object-oriented programming (OOP) is a set of the
program by using the concept of object representation.

-Three objects
- User interface object
- Problem domain object
- Data access object

-A multilayer architecture by
The object don’t need to exist
on the same system

UML requirement VS.
Design models

 Identify

 All the classes or things

 Elementary business

process

 Necessary step to carry

out a use case

 Describe document the

internal workflow of each

use case

 Related activity diagram

show message or data

between user and system

 Track all status of all

condition requirement for

a class.

Overview in Chap6.
This chapter will explains

how to draw UML
components

It will be explained in
Chap11.

10.2 Object-oriented architectural design

 The first step in system design is architectural design

 The system will be deployed

 Web app.

 Win app.

 Software system

 Single user system – example spreadsheet, sample

accounting .,..

 Enterprise-level system

 Client server architectures

 Network based system

 Internet based system

 ….

10.2 Object-oriented architectural design (2)

 Enterprise-level system

 A system that has shared resources among multiple people or

groups in an organization

 Option are client-server or internet based

 Each presents different issues

10.2.1
Component diagram for architectural design

 Component diagram

 A type of design diagram that shows the overall system

architecture and the logical components within it for how the

system will be implemented

 Identifies the logical, reusable, and transportable system

components that define the system architecture

 The essential element of a component diagram is the

component element with its API.

 Application program interface (API)

 The set of public methods that are available to the outside
world

10.2.1
 Component diagram for architectural design

 UML component diagram notation

10.2.1
 Component diagram for architectural design

UML webpage notation

10.2.1
 Component diagram for architectural design

Component diagram showing two-layer internet architecture

10.3 Fundamental principles of the object-
oriented detailed design

 Both the design class diagram

and the interaction diagram

are the most important for
detail design

10.3 Fundamental principles of the object-
oriented detailed design

Sequence diagram for updating student name

Domain model student

Design class diagram student

Write the code for the design class to
implement (Java)

Design class diagram student

Write the code for the design class to
implement (VB.NET)

Design class diagram student

10.3.1 Object-oriented design process

10.4.1 Design class symbols (1)

 stereotype is a notation that uses to categorize a model

element as a certain type. It is placed in << >>

 persistent class an class whose objects exist after a

system is shut down (data remembered)

10.4.1 Design class symbols (2)

 entity class a design identifier for a
problem domain class (usually persistent)

 control class a class that mediates
between boundary classes and entity
classes, acting as a switchboard between
the view layer and domain layer

 boundary class or view class a class that
exists on a system’s automation
boundary, such as an input window form
or Web page

 data access class a class that is used to
retrieve data from and send data to a
database

Example UML design class symbols

Ref: http://www.cs.sjsu.edu/~pearce/modules/patterns/enterprise/ecb/ecb.htm

ATM

10.4.2
Notation for a design class

 Syntax for name, attributes, and methods

10.4.2
Notation for design classes

 Attributes

 Visibility—indicates (+ or -) whether an attribute can be
accessed directly by another object.

 private (-) not visibility

 public (+) visibility

 Attribute name—Lower case camelback notation

 Type expression—class, string, integer, double, date

 Initial value—if applicable the default value

 Property—if applicable, such as {key}

 Examples:

 - accountNo: String {key}

 - startingJobCode: integer = 01

10.4.2
Notation for design classes

 Methods

 Visibility—indicates (+ or -) whether an method can be
invoked by another object.

 private (-) not visibility

 public (+) visibility

 Method name—Lower case camelback, verb-noun

 Parameters—variables passed to a method

 Return type—the type of the data returned

 Examples:

 +setName(fName, lName) : void (void is usually let off)

 +getName(): string (what is returned is a string)

 -checkValidity(date) : int (assuming int is a returned code)

10.4.2
Notation for design classes
 Class level method—a method that is

associated with a class instead of with
objects of the class, Underline it.
 +findStudentsAboveHours(hours):

Array

 Class level attribute—an attribute
that contains the same value for all
object in the system. Underline it.
 -noOfPhoneSales: int

 Abstract class– class that can’t be
instantiated.
 Only for inheritance. Name in Italics.

 Concrete class—class that can be
instantiated.

10.4.2
Notation for design classes

 Navigation Visibility

 The ability of one object to view and interact with another

object

 Accomplished by adding an object reference variable to a class.

 Shown as an arrow head on the association line—customer

can find and interact with sale because it has mySale reference
variable

Navigation visibility guidelines

 One-to-many associations that indicate a

superior/subordinate relationship are usually navigated

from the superior to the subordinate

 Mandatory associations, in which objects in one class

can’t exist without objects of another class, are usually

navigated from the more independent class to the

dependent

 When an object needs information from another object, a

navigation arrow might be required, pointing either to the

object itself or to its parent in a hierarchy.

 Navigation arrows may be bidirectional.

First cut design class diagram

 Proceed use case by use case, adding to the diagram

 Pick the domain classes that are involved in the use case

(see preconditions and post conditions for ideas)

 Add a controller class to be in charge of the use case

 Determine the initial navigation visibility requirements

using the guidelines and add to diagram

 Elaborate the attributes of each class with visibility and

type

 Note that often the associations and multiplicity are

removed from the design class diagram as in text to
emphasize navigation, but they are often left on

Start with domain class diagram
RMO sales subsystem

Create first cut design class diagram

 Use case create

phone sale with
controller added

10.5 Design with CRC cards

 CRC Cards—Classes, Responsibilities, Collaboration

Cards help to identify responsibilities of the class and the

set of classes.

 Usually a manual process done in a brainstorming session

 3 X 5 note cards

 One card per class

 Front has responsibilities and collaborations

 Back has attributes needed

Example of CRC card

CRC cards procedure

 Because the process is to design, or realize, a single use

case, start with a set of unused CRC cards. Add a

controller class (Controller design pattern).

 Identify a problem domain class that has primary

responsibility for this use case that will receive the first

message from the use case controller. For example, a

Customer object for new sale.

 Use the first cut design class diagram to identify other

classes that must collaborate with the primary object

class to complete the use case.

 Have use case descriptions and SSDs handy

CRC card procedure (2)

 Start with the class that gets the first message from the
controller. Name the responsibility and write it on card.

 Now ask what this first class needs to carry out the
responsibility. Assign other classes responsibilities to
satisfy each need. Write responsibilities on those cards.

 Sometimes different designers play the role of each class,
acting out the use case by verbally sending messages to
each other demonstrating responsibilities

 Add collaborators to cards showing which collaborate
with which. Add attributes to back when data is used

 Eventually, user interface classes or even data access
classes can be added

CRC cards results
several use cases

CRC cards results
Adding in user interface layer

CRC cards

 Update design

class diagram

based on CRC

results

 Responsibilities

become methods

 Arguments and

return types not

yet added

10.6 Fundamental design principle
 Coupling

 A quantitative measure of how closely related classes are linked (tightly
or loosely coupled)

 Cohesion
 A quantitative measure of the focus or unity of purpose within a single

class (high or low cohesiveness)

 Protection from variations
 A design principle that states parts of a system unlikely to change are

separated (protected) from those that will surely change

 Indirection
 A design principle that states an intermediate class is placed between

two classes to decouple them but still link them

 Object responsibility
 A design principle that states objects are responsible for carrying out

system processing (Knowing and Doing)

Summary

 Architectural design

 Detail design of software proceeds

 Detailed design models.

 Design class diagrams

 Key issues are attribute elaboration and adding methods.

Method signatures include visibility, method name,

arguments, and return types.

 abstract vs. concrete classes, navigation visibility, and class

level attributes and methods,

 CRC Cards technique

