INTRODUCTION TO
SYSTEMS ANALY SIS AND

DESIGN:
AN AGILE, ITERATIVE APPROACH

SATZINGER | JACKSON | BURD

Chapter 10

Object-Oriented Design:
Principles

Chapter 10

Introduction to Systems
Analysis and Design:

An Agile, Iteractive Approach
6th Ed

Satzinger, Jackson & Burd

Chapter 10 Outline :

e Object-Oriented Design: Bridging from
Analysis to Implementation

e Object-Oriented Architectural Design

e Fundamental Principles of Object-Oriented
Detailed Design

e Design Classes and the Design Class
Diagram

e Detailed Design with CRC Cards

e Fundamental Detailed Design Principles

Introduction to Systems Analysis and Design, 6th Edition 3

Learning Objectives '+

e Explain the purpose and objectives of object-
oriented design

e Develop UML component diagrams
e Develop design class diagrams

e Use CRC cards to define class responsibilities
and collaborations

e Explain some of the fundamental principles of
object-oriented design

Introduction to Systems Analysis and Design, 6th Edition 4

Overview oo

e This chapter and the next focus on designing
software for the new system, at both the
architectural and detailed level design

e Design models are based on the requirements
models learned in Chapters 3, 4, and 5

e For architectural design, the model is shown
as a UML component diagram

e For detailed design, the main models are
design class diagrams and sequence
diagrams

e In this chapter, the CRC Cards technique is
used to design the OO software

Introduction to Systems Analysis and Design, 6th Edition 5

OO Design: oe
The Bridge from Analysis to Design

e OO Design: Process by which a set of detailed OO
design models are built to be used for coding

e Strength of OO is requirements models from
Chapters 3, 4, and 5 are extended to design
models. No reinventing the wheel

e Design models are created in parallel to actual
coding/implementation with iterative SDLC

e Agile approache says create models only if they
are necessary. Simple detailed aspects don't need
a design model before coding

Introduction to Systems Analysis and Design, 6th Edition 6

Object-Oriented Program Flow
Three Layer Architecture

Student 3. Retrieve student
object ‘{‘ﬂmiun.

2. Request \‘ Database
student 6. Save updates to scoess
object. database. object

5. Update student
information.
Input
window
object

4, Enter personal
1. Enter student ID. information updates.

UML
Requirements

vs. Design
Models

Diagrams are
enhanced and
extended

Requirements models

Customer Order

Domain model class diagram

Create
new order
Clerk

Use case diagrams

Clerk System -

Activity diagrams and use
case description

L

.

Clerk

System sequence diagrams

{ Ready I%{Shipped}

Requirements state machine
diagrams

Design models

Intemet 5] Application 5]
sernver server

Component diagrams

Client Network
computer computer

Deployment diagrams

Customer Order
name orderlD
changeMame() shipOrder()

Design class diagrams

:Controller | | :Customer |

Clerk '

— Z
. S

Interaction diagrams (sequence
diagrams)

Design state machine diagrams

— p—

View layer ---—----- =»| Data layer

Package diagrams

Introduction to Systems Analysis and Design, 6th Edition

Architectural Design 11

e Enterprise-level system

e a system that has shared resources among multiple people or
groups in an organization

e Options are Client-Server or Internet Based
o Each presents different issues

Design Issue Client/Server Network System Internet System

State “Stateful” or state-based system—e.qg.,| Stateless system—e.qg.,
client/server connection is long term. | client/server connection is
not long term and has no
inherent memory.

Client configuration | Screens and forms that are Screens and forms are
programmed are displayed directly. displayed only through a
Domain layer is often on the client or browser. They must conform
split between client and server to browser technology.
machines.

Server configuration | Application or data server directly Client tier connects
connects to client tier. indirectly to the application

server through a Web server.

Introduction to Systems Analysis and Design, 6th Edition 9

Component Diagram oot
for Architectural Design

e Component diagram —

A type of design diagram that shows the overall
system architecture and the logical components within
it for how the system will be implemented

|dentifies the logical, reusable, and transportable
system components that define the system
architecture

The essential element of a component diagram is the
component element with its API.

e Application program interface (API) —

The set of public methods that are available to the
outside world

Introduction to Systems Analysis and Design, 6th Edition 10

Component Diagram cece

for Architectural Design oo
| Component

Socket-Uses |

, _ Port-API output
input '

T T interface
) 7y
S

«COmponents»
InventoryDatabaseSysiem

> O

| Alternative socket-
T _____——__ port connection
notation

Socket using |
Port API :

z z

«component» «component»
InventoryUpdateSubsystem InventoryQuerySubsystem

Introduction to Systems Analysis and Design, 6th Edition 1

Component Diagram

Two Layer Internet Architecture o

User Interface Layer

request/
input data
Browser
(with cookies)
«displays» «input data»
Form

«framesets»
Page

JavaScript
VBScript
Applet
Active XControl

reply

Domain Layer
{Business Logic)

Common @
Gateway .

Internet
Server

I
I
I
I
I
I
/ Interface (CGI)
I
=] o
\:\
I

Application @
Server

(session mgr)

PHP B
ASP
JSP

Servlets
ColdFusion

I

I

I

I

I

I

I «frameset= E
| ResponsePage
I

I

I

I

I

Introduction to Systems Analysis and Design, 6th Edition 12

Detailed Design 1
Use Case Realization

e Design and Implement Use Case by Use Case

Sequence Diagram—extended for system sequence
diagram adding a controller and the domain classes

Design Class Diagram—extended from the domain
model class diagram and updated from sequence
diagram

Messages to an object become methods of the design class

Class Definition—written in the chosen code for the
controller and the design classes

Ul Classes—forms or pages are added to handle
user interface between actor and the controller

Data Access Classes—are added to handle domain
layer requests to get or save data to the database

Introduction to Systems Analysis and Design, 6th Edition 13

Detailed Design oo

Sequence Diagram Example
e Use case Update student name

X

Actor

:StudentUpdController :Student

changeName (studentlD, name

e
——

changeName (name)

R

Introduction to Systems Analysis and Design, 6th Edition 14

Design Classes in Detailed Design| $2::

e Elaborate attributes—uvisibility, type, properties

e Add methods and complete signatures

Domain diagram Student

Design class diagram Student

Elaborated
attributes

Student Student
studentlD -studentlD: integer {key)
name -name: string
address -address: string
dateAdmitted -date Admitted: date
lastSemesterCredits -lastSemesterCredits: number
lastSemesterGPA -lastSemesterGPA: number
totalCreditHours -totalCreditHours: number
tDtaIG PA -totalGPA: number
major -major: string
+createStudent (name, address, major): Student
+createStudent (studentlD): Student

+changeMName (name)

+changeAddress (address)
+changeMajor (major)

+getName () : string

+getAddress () : string

+getMajor () : string

+getCreditHours () : number
+updateCreditHours ()

+findAboveHours (int hours): studentArray

/ Method signatures

Write the
Code for the
Design Class
to Implement

public class Student

{

//attributes

private int studentID;

private String firstName;

private String lastName;

private String street;

private String city;

private String state;

private String zipCode;

private Date dateAdmitted;

private float numberCredits;
private String lastActiveSemester;
private float lastActiveSemesterGPA;
private float gradePointAverage;
private String major;

//constructors
public Student (String inFirstName, String inLastName, String inStreet,
String inCity, String inState, String inZip, Date inDate)

firstName = inFirstName;
lastName = inLastName;

}

public Student (int inStudentID)

{

//read database to get values

//get and set methods
public String getFullName ()

{
}

public void setFirstName (String inFirstName)

{

return firstName + " " + lastNames;

firstName = inFirstName;
public flecat getGPA ()

return gradePointAverage;

}

//and so on

//processing methods

public void updateGPA ()

{
//access course records and update lastActiveSemester and
//to-date credits and GPA

Introduction to Systems Analysis and Design, 6th Edition

16

000
0000
i i 0000
OO Detailed Design Steps oo
Chapters 10 and 11 o
Design Step Chapter
1. Develop the first-cut design class diagram showing navigation visibility. 10
2. Determine class responsibilities and class collaborations for each use 10

case using class-responsibility-collaboration [CRC] cards.

3. Develop detailed sequence diagrams for each use case.
[a) Develop the first-cut sequence diagrams.
[b] Develop the multilayer sequence diagrams.

4. Update the design class diagram by adding method signatures and
navigation information using CRC cards and/or sequence diagrams.

9. Partition the solution into packages as appropriate.

Introduction to Systems Analysis and Design, 6th Edition

17

Design Class Diagrams o

stereotype a way of categorizing a model element by its
characteristics, indicated by guillemots (<< >>)

persistent class an class whose objects exist after a
system is shut down (data remembered)

entity class a design identifier for a problem domain
class (usually persistent)

boundary class or view class a class that exists on a
system’s automation boundary, such as an input window
form or Web page

control class a class that mediates between boundary
classes and entity classes, acting as a switchboard
between the view layer and domain layer

data access class a class that is used to retrieve data
from and send data to a database

Introduction to Systems Analysis and Design, 6th Edition 18

Class Stereotypes in UML 3
E;er‘;tityn - — O

UseCaseHandler

O

UseCaseHandler

«boundary: . —
OrderWindow
OrderWindow
«dataAccess» - -
OrderDBReader

OrderDBReader 19

Notation for a Design Class

e Syntax for Name, Attributes, and Methods

«Stereotype Name»
Class Name::Parent Class

Attribute list
visibility name:type-expression = initial-value {property}

Method list
visibility name (parameter list): return type-expression

Introduction to Systems Analysis and Design, 6th Edition

20

Notation for Design Classes :

e Attributes

Visibility—indicates (+ or -) whether an attribute can
be accessed directly by another object. Usually
private (-) not public (+)

Attribute name—Lower case camelback notation
Type expression—class, string, integer, double, date
Initial value—if applicable the default value
Property—if applicable, such as {key}

Examples:

-accountNo: String {key}

-startingJobCode: integer = 01

Introduction to Systems Analysis and Design, 6th Edition 21

Notation for Design Classes :

e Methods

Visibility—indicates (+ or -) whether an method can be
invoked by another object. Usually public (+), can be
private if invoked within class like a subroutine

Method nhame—Lower case camelback, verb-noun
Parameters—variables passed to a method
Return type—the type of the data returned

Examples:

+setName(fName, IName) : void (void is usually let off)
+getName(): string (what is returned is a string)
-checkValidity(date) : int (assuming int is a returned code)

Introduction to Systems Analysis and Design, 6th Edition 22

Notation for Design Classes :

e Class level method—applies to class rather than
objects of class (aka static method). Underline it.

+findStudentsAboveHours(hours): Array
+getNumberOfCustomers(): Integer

e Class level attribute—applies to the class rather
than an object (aka static attribute). Underline it.

-noOfPhoneSales: int

e Abstract class— class that can’t be instantiated.
Only for inheritance. Name in [ltalics.

e Concrete class—class that can be instantiated.

Introduction to Systems Analysis and Design, 6th Edition 23

Sale

-salelD: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

Notation for Design Classes

method arguments and return types not shown

Customer

-name: string
-billingAddress: string

-dayPhone: string
1..1] _nightPhone: string

+additem ()
+cancelSale ()
+makePayment ()

/\

-accountMo: string {key}

-shippingAddress: string

+updateMName ()
+updateAddress ()
+processSale ()

PhoneSale

InternetSale

StoreSale

-clerklD: string
-callingPhone: string
-processTime: int
-noOfPhoneSales: int

-URLaddress: string
-timeOfDay: string
-timeToOrder: int
-noOfWebSales: int

-storelD: string
-noOiStoreSales: int

+confirmEmail ()

+cancelSale ()

Introduction to Systems Analysis and Design, 6th Edition

24

Notation for Design Classes

e Navigation Visibility

The ability of one object to view and interact with another object
Accomplished by adding an object reference variable to a class.
Shown as an arrow head on the association line—customer can

find and interact with sale because it has mySale reference

variable

Customer

Sale

-accountNo: string {key}
-name: string
-billingAddress: string

-shippingAddress: string
-dayPhone: string
-nightPhone: string
-mySale: Sale

-salelD: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

Introduction to Systems Analysis and Design, 6th Edition

25

Navigation Visibility Guidelines o2

e One-to-many associations that indicate a
superior/subordinate relationship are usually
navigated from the superior to the subordinate

e Mandatory associations, in which objects in one
class can’t exist without objects of another class,
are usually navigated from the more
iIndependent class to the dependent

e \When an object needs information from another
object, a navigation arrow might be required

e Navigation arrows may be bidirectional.

Introduction to Systems Analysis and Design, 6th Edition 26

First Cut Design Class Diagram

e Proceed use case by use case, adding to the diagram

e Pick the domain classes that are involved in the use
case (see preconditions and post conditions for ideas)

e Add a controller class to be in charge of the use case
e Determine the initial navigation visibility requirements

using the guidelines and add to diagram

e Elaborate the attributes of each class with visibility and

type

e Note that often the associations and multiplicity are
removed from the design class diagram as in text to

emphasize navigation, but they are often left on

Introduction to Systems Analysis and Design, 6th Edition

27

Start with
Domain
Class
Diagram

RMO Sales
Subsystem

Promotion

season
year
description
startDate
endDate

PromoOffering

ﬂ"*

price
specialPrice

Customer

Productltem

SaleTrans

productlD {key}
vendor

gender
description

1

0"*

date

accountNo {key}
name
billingAddress
shippingAddress

Inventoryltem

inventorylD {key}
size

color

options
quantityOnHand
averageCost
reorderQuantity

transactionType dayPhone
amount nightPhone
paymentMethod
1.* r
']"*

T Sale

— = 7] salelD {key}
quantity saleDate
price \ priorityCode
backorderStatus | 1..* > shipping&Handling

tax
grandTotal

Introduction to Systems Analysis and Design, 6th Edition

28

Create First
Cut Design
Class
Diagram

Use Case
Create phone
sale with
controller
added

Introduction to Systems Analysis and Design, 6th Edition

«controller»
SaleHandler

Customer

Sale

Saleltem

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: siring

-salelD: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

-salelteml|D: int {key}
-quantity: int

-price: float
-backorderStatus: string

PromoOffering

Productltem

Inventoryltem

-price: float
-specialPrice: float

-productID: string {key}
-vendor: string
-gender: string
-description: string

-inventorylD: string {key}
-size: string

-color: string

-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

29

Designing With CRC Cards o

e CRC Cards—Classes, Responsibilities, Collaboration
Cards

e OO design is about assigning Responsibilities to
Classes for how they Collaborate to accomplish a use
case

e Usually a manual process done in a brainstorming
session
3 X 5 note cards
One card per class
Front has responsibilities and collaborations
Back has attributes needed

Introduction to Systems Analysis and Design, 6th Edition 30

Example of CRC Card

Responsibilities

N\

Collaborating classes]
Class name with return dgata Attributes on back
¢ customerNo-

update name Sade (ID) customerNoame
update addressy Payment (ID) customerAddress
request purchase ﬁgmﬁfim

history nightPhone
process sale
make paymenty

Introduction to Systems Analysis and Design, 6th Edition

31

CRC Cards Procedure 44

Because the process is to design, or realize, a single
use case, start with a set of unused CRC cards. Add a
controller class (Controller design pattern).

|dentify a problem domain class that has primary
responsibility for this use case that will receive the first
message from the use case controller. For example, a
Customer object for new sale.

Use the first cut design class diagram to identify other

C
C

I_

asses that must collaborate with the primary object
ass to complete the use case.

ave use case descriptions and SSDs handy

Introduction to Systems Analysis and Design, 6th Edition 32

CRC Cards Procedure (continued)

Start with the class that gets the first message from

the

controller. Name the responsibility and write it on card.

Now ask what this first class needs to carry out the

responsibility. Assign other classes responsibilities to
satisfy each need. Write responsibilities on those cards.

Sometimes different designers play the role of each
class, acting out the use case by verbally sending

messages to each other demonstrating responsibilities

Add collaborators to cards showing which collaborate
with which. Add attributes to back when data is used

Eventually, user interface classes or even data access

classes can be added

Introduction to Systems Analysis and Design, 6th Edition

33

CRC Cards Results

Several Use Cases

Sale Itew
Travaaction

provide price

provide description

34

CRC Cards Results T
Adding In User Interface Layer

updaite infovmation| Sale Item provide price

input Salettandler Salelteny

P provide descyiption
T | B e

Introduction to Systems Analysis and Design, 6th Edition 35

CRC Cards

Update design
class diagram

based on CRC
results

Responsibilities
become methods

Arguments and
return types not
yet added

Introduction to Systems Analysis and Design, 6th Edition

«controller»
SaleHandler

+processNewSale ()
+addltemsToSale ()
+makePayment ()

SaleTransaction

-transactionlD: int {key}
-saleDate: date
-transactionType: string
-amount: float
-payMethod: string

+processPayment ()

Customer

Sale

Saleltem

-accountNo: string {key!}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-salelD: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float

-grandTotal: float

-orderltemID: int {key}
-quantity: int

-price: float
-description: string
-backorderStatus: string

+updateName ()
+updateAddress ()
+processSale ()
+requestHistory ()

+addltem ()
+updatelnformation ()
+requestShipping ()
+updateStatus ()
+cancelSale ()
+makePayment ()

+updatelnformation ()
+cancelltem ()
+requestBackorder ()

PromoOffering

Productltem

Inventoryltem

-cataloglD: string {key}
-productID: string {key}
-price: float
-specialPrice: float

-productlD: string {key}
-vendor: string
-gender: string
-description: string

-inventorylD: string {key!}
-size: string

-color: string

-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

+getPrice ()

+getDescription ()

+updateQOH ()

36

Fundamental Design Principles 4

e Coupling
A quantitative measure of how closely related classes
are linked (tightly or loosely coupled)

Two classes are tightly coupled of there are lots of
associations with another class

Two classes are tightly coupled if there are lots of
messages to another class

It is best to have classes that are loosely coupled

If deciding between two alternative designs, choose
the one where overall coupling is less

Introduction to Systems Analysis and Design, 6th Edition 37

Fundamental Design Principles 4

e Cohesion

A quantitative measure of the focus or unity of
purpose within a single class (high or low
cohesiveness

One class has high cohesiveness if all of its
responsibilities are consistent and make sense for
purpose of the class (a customer carries out
responsibilities that naturally apply to customers)

One class has low cohesiveness if its responsibilities
are broad or makeshift

It is best to have classes that are highly cohesive

If deciding between two alternative designs, choose
the one where overall cohesiveness is high

Introduction to Systems Analysis and Design, 6th Edition 38

Fundamental Design Principles 4

e Protection from Variations

A design principle that states parts of a system
unlikely to change are separated (protected) from
those that will surely change

Separate user interface forms and pages that are
likely to change from application logic

Put database connection and SQL logic that is likely
to change in a separate classes from application logic

Use adaptor classes that are likely to change when
interfacing with other systems

If deciding between two alternative designs, choose
the one where there is protection from variations

Introduction to Systems Analysis and Design, 6th Edition 39

Fundamental Design Principles 4

e Indirection

A design principle that states an intermediate class is
placed between two classes to decouple them but still
link them

A controller class between Ul classes and problem
domain classes is an example

Supports low coupling

Indirection is used to support security by directing
messages to an intermediate class as in a firewall

If deciding between two alternative designs, choose
the one where indirection reduces coupling or
provides greater security

Introduction to Systems Analysis and Design, 6th Edition 40

Fundamental Design Principles 4
e Object Responsibility

A design principle that states objects are responsible for
carrying out system processing

A fundamental assumption of OO design and programming
Responsibilities include “knowing” and “doing”

Objects know about other objects (associations) and they
know about their attribute values. Objects know how to carry
out methods, do what they are asked to do.

Note that CRC cards and the design in the next chapter
Involve assigning responsibilities to classes to carry out a use
case.

If deciding between two alternative designs, choose the one
where objects are assigned responsibilities to collaborate to
complete tasks (don’t think procedurally).

Introduction to Systems Analysis and Design, 6th Edition 41

Summary :

This chapter focused on designing software that solves
business problems by bridging the gap between analysis and
implementation.

Architectural design is the first step, and the UML component
diagram is used to model the main components and
application program interfaces (API)

Detail design of software proceeds use case by use case,
sometimes called “use case driven” and the design of each
use case is called use case realization.

Detailed design models used are design class diagrams
(DCDs) and sequence diagrams.

The design class diagram is developed is two steps: The first
cut diagram is based on the domain model class diagram, but
then it is expanded as responsibilities are assigned and
sequence diagrams are developed.

Introduction to Systems Analysis and Design, 6th Edition 42

Summary (continued) o

e Design class diagrams include additional notation because
design classes are now software classes, not just work
concepts.

e Key issues are attribute elaboration and adding methods.
Method signatures include visibility, method name,
arguments, and return types.

e Other key terms are abstract vs. concrete classes, navigation
visibility, and class level attributes and methods,

e CRC Cards technique can be used to design how the classes
collaborate to complete each use case. CRC stands for
Classes, Responsibilities, and Collaborations.

e Sometimes the CRC cards approach is used for the initial
design of a use case that is further developed using
sequence diagrams (as in the next chapter).

Introduction to Systems Analysis and Design, 6th Edition 43

Summary (continued) o

e Once responsibilities are assigned to classes, the design
class diagram is updated by adding methods to classes and
updating navigation visibility.

e Decisions about design options are guided by some
fundamental design principles. Some of these are coupling,
cohesion, protection from variations, indirection, and object
responsibility.

Introduction to Systems Analysis and Design, 6th Edition 44

