
Systems Analysis and Design in a Changing World, 6th Edition 1

INTRODUCTION TO

SYSTEMS ANALYSIS AND

DESIGN:
AN AGILE, ITERATIVE APPROACH

SATZINGER | JACKSON | BURD

Chapter 10

Object-Oriented Design:

Principles

Chapter 10

Introduction to Systems

Analysis and Design:

An Agile, Iteractive Approach

6th Ed

Satzinger, Jackson & Burd

3

Chapter 10 Outline

 Object-Oriented Design: Bridging from

Analysis to Implementation

 Object-Oriented Architectural Design

 Fundamental Principles of Object-Oriented

Detailed Design

 Design Classes and the Design Class

Diagram

 Detailed Design with CRC Cards

 Fundamental Detailed Design Principles

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

4

Learning Objectives

 Explain the purpose and objectives of object-

oriented design

 Develop UML component diagrams

 Develop design class diagrams

 Use CRC cards to define class responsibilities

and collaborations

 Explain some of the fundamental principles of

object-oriented design

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

5

Overview

 This chapter and the next focus on designing
software for the new system, at both the
architectural and detailed level design

 Design models are based on the requirements
models learned in Chapters 3, 4, and 5

 For architectural design, the model is shown
as a UML component diagram

 For detailed design, the main models are
design class diagrams and sequence
diagrams

 In this chapter, the CRC Cards technique is
used to design the OO software

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

6

OO Design:
The Bridge from Analysis to Design

 OO Design: Process by which a set of detailed OO

design models are built to be used for coding

 Strength of OO is requirements models from

Chapters 3, 4, and 5 are extended to design

models. No reinventing the wheel

 Design models are created in parallel to actual

coding/implementation with iterative SDLC

 Agile approache says create models only if they

are necessary. Simple detailed aspects don’t need

a design model before coding

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Systems Analysis and Design in a Changing World, 6th Edition 7

Object-Oriented Program Flow
Three Layer Architecture

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

8

UML

Requirements

vs. Design

Models

Diagrams are

enhanced and

extended

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

9

Architectural Design

 Enterprise-level system
 a system that has shared resources among multiple people or

groups in an organization

 Options are Client-Server or Internet Based
 Each presents different issues

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

10

Component Diagram
for Architectural Design

 Component diagram –
 A type of design diagram that shows the overall

system architecture and the logical components within
it for how the system will be implemented

 Identifies the logical, reusable, and transportable
system components that define the system
architecture

 The essential element of a component diagram is the
component element with its API.

 Application program interface (API) –
 The set of public methods that are available to the

outside world

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

11

Component Diagram
for Architectural Design

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

12

Component Diagram
Two Layer Internet Architecture

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

13

Detailed Design
Use Case Realization

 Design and Implement Use Case by Use Case
 Sequence Diagram—extended for system sequence

diagram adding a controller and the domain classes

 Design Class Diagram—extended from the domain
model class diagram and updated from sequence
diagram
 Messages to an object become methods of the design class

 Class Definition—written in the chosen code for the
controller and the design classes

 UI Classes—forms or pages are added to handle
user interface between actor and the controller

 Data Access Classes—are added to handle domain
layer requests to get or save data to the database

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

14

Detailed Design
Sequence Diagram Example

 Use case Update student name

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Systems Analysis and Design in a Changing World, 6th Edition 15

Design Classes in Detailed Design
 Elaborate attributes—visibility, type, properties

 Add methods and complete signatures

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

16

Write the

Code for the

Design Class

to Implement

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

17

OO Detailed Design Steps
Chapters 10 and 11

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

18

Design Class Diagrams

 stereotype a way of categorizing a model element by its
characteristics, indicated by guillemots (<< >>)

 persistent class an class whose objects exist after a
system is shut down (data remembered)

 entity class a design identifier for a problem domain
class (usually persistent)

 boundary class or view class a class that exists on a
system’s automation boundary, such as an input window
form or Web page

 control class a class that mediates between boundary
classes and entity classes, acting as a switchboard
between the view layer and domain layer

 data access class a class that is used to retrieve data
from and send data to a database

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Systems Analysis and Design in a Changing World, 6th Edition 19

Class Stereotypes in UML

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

20

Notation for a Design Class

 Syntax for Name, Attributes, and Methods

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

21

Notation for Design Classes

 Attributes

 Visibility—indicates (+ or -) whether an attribute can

be accessed directly by another object. Usually

private (-) not public (+)

 Attribute name—Lower case camelback notation

 Type expression—class, string, integer, double, date

 Initial value—if applicable the default value

 Property—if applicable, such as {key}

 Examples:

-accountNo: String {key}

-startingJobCode: integer = 01

Introduction to Systems Analysis and Design, 6th Edition

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

22

Notation for Design Classes

 Methods
 Visibility—indicates (+ or -) whether an method can be

invoked by another object. Usually public (+), can be
private if invoked within class like a subroutine

 Method name—Lower case camelback, verb-noun

 Parameters—variables passed to a method

 Return type—the type of the data returned

 Examples:

+setName(fName, lName) : void (void is usually let off)

+getName(): string (what is returned is a string)

-checkValidity(date) : int (assuming int is a returned code)

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

23

Notation for Design Classes

 Class level method—applies to class rather than

objects of class (aka static method). Underline it.

 +findStudentsAboveHours(hours): Array

 +getNumberOfCustomers(): Integer

 Class level attribute—applies to the class rather

than an object (aka static attribute). Underline it.

 -noOfPhoneSales: int

 Abstract class– class that can’t be instantiated.

 Only for inheritance. Name in Italics.

 Concrete class—class that can be instantiated.

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

24

Notation for Design Classes
method arguments and return types not shown

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

25

Notation for Design Classes

 Navigation Visibility
 The ability of one object to view and interact with another object

 Accomplished by adding an object reference variable to a class.

 Shown as an arrow head on the association line—customer can

find and interact with sale because it has mySale reference

variable

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

26

Navigation Visibility Guidelines

 One-to-many associations that indicate a

superior/subordinate relationship are usually

navigated from the superior to the subordinate

 Mandatory associations, in which objects in one

class can’t exist without objects of another class,

are usually navigated from the more

independent class to the dependent

 When an object needs information from another

object, a navigation arrow might be required

 Navigation arrows may be bidirectional.

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

27

First Cut Design Class Diagram

 Proceed use case by use case, adding to the diagram

 Pick the domain classes that are involved in the use

case (see preconditions and post conditions for ideas)

 Add a controller class to be in charge of the use case

 Determine the initial navigation visibility requirements

using the guidelines and add to diagram

 Elaborate the attributes of each class with visibility and

type

 Note that often the associations and multiplicity are

removed from the design class diagram as in text to

emphasize navigation, but they are often left on

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

28

Start with

Domain

Class

Diagram

RMO Sales

Subsystem

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

29

Create First

Cut Design

Class

Diagram

Use Case

Create phone

sale with

controller

added

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

30

Designing With CRC Cards

 CRC Cards—Classes, Responsibilities, Collaboration

Cards

 OO design is about assigning Responsibilities to

Classes for how they Collaborate to accomplish a use

case

 Usually a manual process done in a brainstorming

session

 3 X 5 note cards

 One card per class

 Front has responsibilities and collaborations

 Back has attributes needed

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

31

Example of CRC Card

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

32

CRC Cards Procedure

 Because the process is to design, or realize, a single

use case, start with a set of unused CRC cards. Add a

controller class (Controller design pattern).

 Identify a problem domain class that has primary

responsibility for this use case that will receive the first

message from the use case controller. For example, a

Customer object for new sale.

 Use the first cut design class diagram to identify other

classes that must collaborate with the primary object

class to complete the use case.

 Have use case descriptions and SSDs handy

Introduction to Systems Analysis and Design, 6th Edition

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

33

CRC Cards Procedure (continued)

 Start with the class that gets the first message from the

controller. Name the responsibility and write it on card.

 Now ask what this first class needs to carry out the

responsibility. Assign other classes responsibilities to

satisfy each need. Write responsibilities on those cards.

 Sometimes different designers play the role of each

class, acting out the use case by verbally sending

messages to each other demonstrating responsibilities

 Add collaborators to cards showing which collaborate

with which. Add attributes to back when data is used

 Eventually, user interface classes or even data access

classes can be added

 Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

34

CRC Cards Results
Several Use Cases

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

35

CRC Cards Results
Adding In User Interface Layer

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

36

CRC Cards

Update design

class diagram

based on CRC

results

Responsibilities

become methods

Arguments and

return types not

yet added

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

37

Fundamental Design Principles

 Coupling

 A quantitative measure of how closely related classes

are linked (tightly or loosely coupled)

 Two classes are tightly coupled of there are lots of

associations with another class

 Two classes are tightly coupled if there are lots of

messages to another class

 It is best to have classes that are loosely coupled

 If deciding between two alternative designs, choose

the one where overall coupling is less

Introduction to Systems Analysis and Design, 6th Edition

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

38

Fundamental Design Principles

 Cohesion

 A quantitative measure of the focus or unity of

purpose within a single class (high or low

cohesiveness

 One class has high cohesiveness if all of its

responsibilities are consistent and make sense for

purpose of the class (a customer carries out

responsibilities that naturally apply to customers)

 One class has low cohesiveness if its responsibilities

are broad or makeshift

 It is best to have classes that are highly cohesive

 If deciding between two alternative designs, choose

the one where overall cohesiveness is high

 Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

39

Fundamental Design Principles

 Protection from Variations

 A design principle that states parts of a system

unlikely to change are separated (protected) from

those that will surely change

 Separate user interface forms and pages that are

likely to change from application logic

 Put database connection and SQL logic that is likely

to change in a separate classes from application logic

 Use adaptor classes that are likely to change when

interfacing with other systems

 If deciding between two alternative designs, choose

the one where there is protection from variations

Introduction to Systems Analysis and Design, 6th Edition

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

40

Fundamental Design Principles

 Indirection

 A design principle that states an intermediate class is

placed between two classes to decouple them but still

link them

 A controller class between UI classes and problem

domain classes is an example

 Supports low coupling

 Indirection is used to support security by directing

messages to an intermediate class as in a firewall

 If deciding between two alternative designs, choose

the one where indirection reduces coupling or

provides greater security

Introduction to Systems Analysis and Design, 6th Edition

© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

41

Fundamental Design Principles

 Object Responsibility
 A design principle that states objects are responsible for

carrying out system processing

 A fundamental assumption of OO design and programming

 Responsibilities include “knowing” and “doing”

 Objects know about other objects (associations) and they
know about their attribute values. Objects know how to carry
out methods, do what they are asked to do.

 Note that CRC cards and the design in the next chapter
involve assigning responsibilities to classes to carry out a use
case.

 If deciding between two alternative designs, choose the one
where objects are assigned responsibilities to collaborate to
complete tasks (don’t think procedurally).

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

42

Summary

 This chapter focused on designing software that solves

business problems by bridging the gap between analysis and

implementation.

 Architectural design is the first step, and the UML component

diagram is used to model the main components and

application program interfaces (API)

 Detail design of software proceeds use case by use case,

sometimes called “use case driven” and the design of each

use case is called use case realization.

 Detailed design models used are design class diagrams

(DCDs) and sequence diagrams.

 The design class diagram is developed is two steps: The first

cut diagram is based on the domain model class diagram, but

then it is expanded as responsibilities are assigned and

sequence diagrams are developed.

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

43

Summary (continued)

 Design class diagrams include additional notation because

design classes are now software classes, not just work

concepts.

 Key issues are attribute elaboration and adding methods.

Method signatures include visibility, method name,

arguments, and return types.

 Other key terms are abstract vs. concrete classes, navigation

visibility, and class level attributes and methods,

 CRC Cards technique can be used to design how the classes

collaborate to complete each use case. CRC stands for

Classes, Responsibilities, and Collaborations.

 Sometimes the CRC cards approach is used for the initial

design of a use case that is further developed using

sequence diagrams (as in the next chapter).

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

44

Summary (continued)

 Once responsibilities are assigned to classes, the design

class diagram is updated by adding methods to classes and

updating navigation visibility.

 Decisions about design options are guided by some

fundamental design principles. Some of these are coupling,

cohesion, protection from variations, indirection, and object

responsibility.

Introduction to Systems Analysis and Design, 6th Edition
© 2012 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition.

 May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

