Computer System Organization & Operating System 43

Activity 5: System call with Assembly Language and Processes
in Linux

Objective
1. The aim of this activity is to give students know the system call in Ubuntu (Linux OS).

2. The second is to give the experience writing a code with assembly language to call the
system call.

5.1 What is System Call?

System call is a function provide by OS for the application request services. Linux in
kernel 2.0 has number of the system call at 190 functions in 32bit OS, from table 5.1 shown only
first 15 system calls. This activity uses system call no. 1 and 4.

Table 5.1 Example of system calls in Linux 32bit

No / System call

Short description

0x00 sys_setup

Call function filesystem.c

0x01 sys_exit

Terminate the current process

0x02 sys_fork

Create a child process

0x03 sys_read

Read from a file descriptor

0x04 sys_write

Write to a file descriptor

0x05 sys_open

Open if possibly create a file or device

0x06 sys_close

Close a file descriptor

0x07 sys_waitpid

Wait for process termination

0x08 sys_creat

Create a file or device

0x09 sys_link

Make a new name for a file

0x0a sys_unlink

Delete a name and possibly the file it refers to

0x0b sys_execve

Execute program

0x0c sys_chdir

Change working directory

0x0d sys_time

Get time in seconds

0x0e sys_mknod

Create a directory or special or ordinary file

0xO0f sys_chmod

Change permissions for a file

©2017 Supakit Nootyaskool All Right Reserved

IT-KMITL



Computer System Organization & Operating System 44

Before staring the activity, we should look at the related UNIX commands for this

activity at table 5.2,

Table 5.2 List of Unix commands related in this activity.

Command pattern

Description

sudo apt install nasm

Sudo command allows permissions to the user or code
scripts to run as a super user. Sudo command is used to
install a module to the system. The example shows the
command for installing nasm (The Netwide Assembler).

gedit file

Open editor to edit a file.

nasm —-f elf hello.asm

Netwide Assembler converts hello.asm to an object file.
The argument “-f sets the format of the compiler by

elf32: 32bits Linux system,
elf64: 64bits Linux system,
win32: 32bits Microsoft Windows
win64: 64bits Microsoft Windows

1d -0 executefile
elf 1386 —-s objfile

A command links the object file and archive files to create
an execute file.

1ls -1

Show list of filenames and details

./executedfile &

Running the execution file informs the background process

kill pid

Kill a process

kill -9 pid

Kill a process with strong command

pPs

Display process information and the process ID

rm filname

Delete a file

cd directoryname

Move to a directory

gcc -o file exe

file cpp

Compile a C language file to output an execute file.

1) The activity starts by opening Ubuntu OS (This activity material provided VirtualBox
installed Ubuntu 16.3) and running Terminal app as shown in the figure below.

©2017 Supakit Nootyaskool All Right Reserved

IT-KMITL




Computer System Organization & Operating System 45

(o) 1 B ) 11:27 &%

@4 ® ter Filter results »

A Applications

Terminal

2) In some system not installed nasm, installation runs a command,

$ sudu apt dinstall nasm

3) Open gedit app is an editor to write the code from below.
$ gedit hello.asm

section .text

global start

_start:
mov edx, len ;message length
mov ecx,msg ;message to write
mov ebx, 1 ;file descriptor (stdout)
mov eax, 4 ;system call number (sys write)
int 0x80 ;call kernel
mov eax, 1l ;system call number (sys_exit)
int 0x80 ;call kernel

section .data
msg db 'Hello, world!',Oxa ;our dear string

len equ $ - msg ;length of our dear string

4) The assembly code is converted to machine language in from the hex code with commands as
below. First command compiles hello.asm to hello.o called the object file and the second links
hello.o and system library to make an execution file.

$ nasm —-f elf hello.asm

$ 1d —o hello exe —m elf i386 -s hello.o

©2017 Supakit Nootyaskool All Right Reserved IT-KMITL




Computer System Organization & Operating System 46

5) Uses “Is” command to show the list of file the current directory.
$ 1s -1

-TW-rw-r-- 1 csos csos 133 @A.A. 9 13:52 hello2.cpp
-rwWw-rw-r-- 1 csos csos 179 f.A. 9 12:35 hello.asm
-rWXrwxr-x 1 csos csos 360 6.A. 9 14:43 hello_exe
-TW-rwW-r-- 1 csos csos 624 B.A. 9 12:35 hello.o
csos@csos-VirtualBox:~/Desktops I

6) Run the execute file hello_exe with command,
$ ./hello_exe

7) Record the output of the program below,

5.2 Start writing C language in UNIX

This activity shows you in two things, writing C language in Linux and process
managements. First starts with writing code in C language.

1) Open the terminal app and type,
gedit hello2.cpp

2) Write the code the figure below.

#include <stdio.h>
int main(void)
{
int 1i;
for (i=0; i<10;i++)
printf (“Hello World %d”,i);

return 0;

3) Compile the code with gcc command,
gcc -0 helloZ exe hello2.cpp

4) Run program with command,
./hello _exe

©2017 Supakit Nootyaskool All Right Reserved IT-KMITL




Computer System Organization & Operating System a7

5) Check output of the program and write the result.

5.3 The background processes and killing an unused process

1) Write the program as the code below by saving the execute file in name “nothing_exe”

#include <stdio.h>
int main(void)
{
while (1)
{
int 1i;
for (i=0; i<10000;i++)
i=i; //spending time by do something.
}
return 0;

}

2) Execute the program with a command below, by running four times.

./nothing exe &

3) Use ps and top command to check the running process, and recored PID number of each
process.

$ ps
$ top

4) Use kill command to kill the running process. If some process is locked (it cannot terminate
by the kill command), you try “kill -9 pid”

$ kill pid
$ kill -9 pid

5.4 Questions

©2017 Supakit Nootyaskool All Right Reserved IT-KMITL




Computer System Organization & Operating System 48

1) What is the process detail that presented by top command?

2) What is effect when a user kills a process by typing wrong PID or giving PID of system
process?

3) What is process of the program from the code at line 7 to 10 from the activity 4.1?

4) From activity 4.1, we study system call 0x01 and 0x04 that is in 32bit UNIX. Given student
compare the system call of 64bit UNIX, by searching the list of 64bit system call from Internet,
and give the detail at below.

===END===

©2017 Supakit Nootyaskool All Right Reserved IT-KMITL



