
Akshita Mehta

Follow 31 Followers About

Machine Learning on Heart Disease Dataset

Akshita Mehta Oct 12, 2019 · 7 min read

“ Health is a state of complete physical, social and mental well being and not merely the

absence of disease or infirmity. Health is thus a level of functional efficiency of living beings

and a general condition of a person’s mind, body and spirit, meaning it is free from illness,

injury and pain. It is a resource of everyday life and a positive concept emphasizing physical

capabilities.”

Good Health is the Best Wealth!!!

In this Medium article, we will learn about different classification techniques being

applied to a heart disease which predicts whether a person is suffering from heart

disease or not using Kaggle Heart Disease Dataset

About the Dataset

Get started Open in app

https://medium.com/@am7799?source=post_page-----8a930cefff1d--------------------------------
https://medium.com/@am7799/followers?source=post_page-----8a930cefff1d--------------------------------
https://medium.com/@am7799/about?source=post_page-----8a930cefff1d--------------------------------
https://medium.com/@am7799?source=post_page-----8a930cefff1d--------------------------------
https://medium.com/@am7799?source=post_page-----8a930cefff1d--------------------------------
https://medium.com/@am7799/machine-learning-on-heart-disease-dataset-8a930cefff1d?source=post_page-----8a930cefff1d--------------------------------
https://www.kaggle.com/johnsmith88/heart-disease-dataset/downloads/heart-disease-dataset.zip/2
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F8a930cefff1d&~feature=LoOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar&source=post_page-----8a930cefff1d--------------------------------
https://medium.com/?source=post_page-----8a930cefff1d--------------------------------

This data set dates from 1988 and consists of four databases: Cleveland, Hungary,

Switzerland, and Long Beach V. It contains 76 attributes, including the predicted

attribute, but all published experiments refer to using a subset of 14 of them. The

“target” field refers to the presence of heart disease in the patient. It is integer-valued 0

= no disease and 1 = disease.

Attribute Information
age : age in years

sex : (1 = male; 0 = female)

cp : chest pain type

trestbps : resting blood pressure (in mm Hg on admission to the hospital)

chol : serum cholestoral in mg/dl

fbs : (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

restecg : resting electrocardiographic results

thalach : maximum heart rate achieved

exang : exercise induced angina (1 = yes; 0 = no)

oldpeak : ST depression induced by exercise relative to rest

slope : the slope of the peak exercise ST segment

ca : number of major vessels (0–3) colored by flourosopy

thal : 1 = normal; 2 = fixed defect; 3 = reversable defect

target : 1 = disease; 0 = no disease

A snippet of csv file

Importing Libraries

import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score

Reading CSV File

dataset = pd.read_csv(‘heart.csv’)
X = dataset.iloc[:,:-1].values
y = dataset.iloc[:,-1].values

Encoding Categorical Data
One hot encoding is a process by which categorical variables are converted into a form

that could be provided to ML algorithms to do a better job in prediction

from sklearn.preprocessing import OneHotEncoder
#cp
oneHotEncoder = OneHotEncoder(categorical_features=[2],
n_values='auto')
oneHotEncoder.fit(X)
X = oneHotEncoder.transform(X).toarray()
X = X[:, 1:]
#restecg
oneHotEncoder = OneHotEncoder(categorical_features=[8],
n_values='auto')
oneHotEncoder.fit(X)
X = oneHotEncoder.transform(X).toarray()
X = X[:, 1:]
#slope
oneHotEncoder = OneHotEncoder(categorical_features=[13],
n_values='auto')
oneHotEncoder.fit(X)
X = oneHotEncoder.transform(X).toarray()
X = X[:, 1:]
#ca
oneHotEncoder = OneHotEncoder(categorical_features=[15],
n_values='auto')
oneHotEncoder.fit(X)
X = oneHotEncoder.transform(X).toarray()
X = X[:, 1:]
#thal
oneHotEncoder = OneHotEncoder(categorical_features=[19],
n_values='auto')
oneHotEncoder.fit(X)

X = oneHotEncoder.transform(X).toarray()
X = X[:, 1:]

from sklearn.preprocessing import StandardScaler
scalerX = StandardScaler()
X = scalerX.fit_transform(X)

Splitting the Dataset

from sklearn.model_selection import train_test_split
XTrain, XTest, yTrain, yTest = train_test_split(X, y, test_size=0.3,
random_state=0)

What is Classification?
Classification is a technique to categorize our data into a desired and distinct number of

classes where we can assign labels to each class.

Now we will be applying different classification techniques using the existing libraries in

python.

Logistic Regression

Logistic regression is used to describe data and to explain the relationship between one

dependent binary variable and one or more nominal, ordinal, interval or ratio-level

independent variables.

from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(XTrain,yTrain)
yPred = classifier.predict(XTest)
mse = mean_squared_error(yTest,yPred)
r = r2_score(yTest,yPred)
mae = mean_absolute_error(yTest,yPred)
accuracy = accuracy_score(yTest,yPred)
print(“Logistic Regression :”)
print(“Accuracy = “, accuracy)
print(“Mean Squared Error:”,mse)
print(“R score:”,r)
print(“Mean Absolute Error:”,mae)

Decision Tree Classifier

Decision Trees are a non-parametric supervised learning method used for classification and

regression. The goal is to create a model that predicts the value of a target variable by

learning simple decision rules inferred from the data features.

from sklearn.tree import DecisionTreeClassifier as DT
classifier = DT(criterion='entropy', random_state=0)
classifier.fit(XTrain,yTrain)
yPred = classifier.predict(XTest)
mse = mean_squared_error(yTest,yPred)
r = r2_score(yTest,yPred)
mae = mean_absolute_error(yTest,yPred)
accuracy = accuracy_score(yTest,yPred)
print("Decision Tree Classifier :")
print("Mean Squared Error:",mse)
print("R score:",r)
print("Mean Absolute Error:",mae)
print("Accuracy = ", accuracy)

Perceptron

Perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is

a function which can decide whether or not an input, represented by a vector of numbers,

belongs to some specific class.

from sklearn.linear_model import Perceptron
classifier = Perceptron(tol=1e-3, random_state=0)
classifier.fit(XTrain,yTrain)
yPred = classifier.predict(XTest)
mse = mean_squared_error(yTest,yPred)
r = r2_score(yTest,yPred)
mae = mean_absolute_error(yTest,yPred)
accuracy = accuracy_score(yTest,yPred)
print("Perceptron :")
print("Accuracy = ", accuracy)
print("Mean Squared Error:",mse)
print("R score:",r)
print("Mean Absolute Error:",mae)

K Nearest Neighbors

In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-parametric

method used for classification and regression. In both cases, the input consists of the k

closest training examples in the feature space.

from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, p=2,
metric='minkowski')
classifier.fit(XTrain,yTrain)
yPred = classifier.predict(XTest)
mse = mean_squared_error(yTest,yPred)
r = r2_score(yTest,yPred)
mae = mean_absolute_error(yTest,yPred)
accuracy = accuracy_score(yTest,yPred)
print("K Nearest Neighbors :")
print("Accuracy = ", accuracy)
print("Mean Squared Error:",mse)
print("R score:",r)
print("Mean Absolute Error:",mae)

Support Vector Machine

SVM is a supervised machine learning algorithm which can be used for classification or

regression problems. It uses a technique called the kernel trick to transform your data and

then based on these transformations it finds an optimal boundary between the possible

outputs.

from sklearn.svm import SVC
classifier = SVC(kernel='linear',random_state=0)
classifier.fit(XTrain,yTrain)
yPred = classifier.predict(XTest)
mse = mean_squared_error(yTest,yPred)
r = r2_score(yTest,yPred)
mae = mean_absolute_error(yTest,yPred)
accuracy = accuracy_score(yTest,yPred)
print("Support Vector Machine :")
print("Accuracy = ", accuracy)
print("Mean Squared Error:",mse)
print("R score:",r)
print("Mean Absolute Error:",mae)

Gaussian Naive Bayes

A Gaussian Naive Bayes algorithm is a special type of NB algorithm. It’s specifically used

when the features have continuous values. It’s also assumed that all the features are

following a gaussian distribution i.e, normal distribution.

from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(XTrain,yTrain)
yPred = classifier.predict(XTest)
mse = mean_squared_error(yTest,yPred)
r = r2_score(yTest,yPred)
mae = mean_absolute_error(yTest,yPred)
accuracy = accuracy_score(yTest,yPred)
print("Gaussian Naive Bayes :")
print("Accuracy = ", accuracy)
print("Mean Squared Error:",mse)
print("R score:",r)
print("Mean Absolute Error:",mae)

Random Forest Classifier

It consists of a large number of individual decision trees that operate as an ensemble. Each

individual tree in the random forest spits out a class prediction and the class with the most

votes becomes our model’s prediction.

from sklearn.ensemble import RandomForestClassifier as RF
classifier = RF(n_estimators=10, criterion='entropy', random_state=0)
classifier.fit(XTrain,yTrain)
yPred = classifier.predict(XTest)
mse = mean_squared_error(yTest,yPred)
r = r2_score(yTest,yPred)
mae = mean_absolute_error(yTest,yPred)
accuracy = accuracy_score(yTest,yPred)
print("Random Forest Classifier :")
print("Accuracy = ", accuracy)
print("Mean Squared Error:",mse)
print("R score:",r)
print("Mean Absolute Error:",mae)

Artificial Neural Network

An artificial neural network is an interconnected group of nodes, inspired by a

simplification of neurons in a brain. Here, each circular node represents an artificial neuron

and an arrow represents a connection from the output of one artificial neuron to the input

of another.

from keras.models import Sequential
from keras.layers import Dense

#Initialising ANN
classifier = Sequential()

#Adding the first hidden layer or the input layer
classifier.add(Dense(activation='relu',
 kernel_initializer='uniform',
 input_dim=22,
 units=12))
#Adding the second hidden layer
classifier.add(Dense(activation='relu',
 kernel_initializer='uniform',
 units=12))
#Adding the output layer
classifier.add(Dense(activation='sigmoid',
 kernel_initializer='uniform',
 units=1))

#Compiling the ANN
classifier.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['accuracy'])
print(classifier.summary())

#Fitting the ANN
history = classifier.fit(XTrain, yTrain, batch_size=5, epochs=20,
verbose=1)
from matplotlib import pyplot as plt
plt.plot(history.history['acc'],'green')
plt.plot(history.history['loss'],'red')
plt.title('Model Accuracy-Loss')
plt.xlabel('Epoch')
plt.legend(['Accuracy','Loss'])
plt.show()

#Predicting the Test set Results
yPred = classifier.predict(XTest)
yPred = (yPred>0.5) #Since output is probability
mse = mean_squared_error(yTest,yPred)
r = r2_score(yTest,yPred)
mae = mean_absolute_error(yTest,yPred)
accuracy = accuracy_score(yTest,yPred)
print("Artificial Neural Network Classifier :")
print("Accuracy = ", accuracy)
print("Mean Squared Error:",mse)
print("R score:",r)
print("Mean Absolute Error:",mae)

Rather than trying each algorithm separately, we will try a new method and
display it using pretty tables

from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Model","Accuracy", "Mean Squared Error", "R²
score","Mean Absolute Error"]
models = [

 LogisticRegression(),
 KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski'),
 SVC(kernel='linear',random_state=0),
 GaussianNB(),
 DT(criterion='entropy', random_state=0),
 RF(n_estimators=10, criterion='entropy', random_state=0),
 Perceptron(tol=1e-3, random_state=0)
]
for model in models:
 model.fit(XTrain, yTrain)
 yPred = model.predict(XTest)
 accuracy = accuracy_score(yTest,yPred)
 mse = mean_squared_error(yTest,yPred)
 r = r2_score(yTest,yPred)
 mae = mean_absolute_error(yTest,yPred)

table.add_row([type(model).__name__, format(accuracy,
'.3f'),format(mse, '.3f'),format(r, '.3f'),format(mae, '.3f')])

table.add_row(["Artificial Neural Network Classifier",0.954
,0.045,0.817,0.045])
print(table)

CONCLUSION
From the above output, we see that RandomForestClassifier works best for our dataset.

And if you want to get the whole code for the algorithms tested above, you can find it

here :)

Blog by:

Akshita Mehta

https://colab.research.google.com/drive/1uLSFMPM3IUda1NsC5Rej5RiRiWkMs1Ck

Github LinkedIn

Machine Learning Classification Heart Disease Dataset

About Help Legal

Get the Medium app

https://github.com/MehtaAkshita
https://www.linkedin.com/in/akshita-mehta-5552a116b/
https://medium.com/tag/machine-learning
https://medium.com/tag/classification
https://medium.com/tag/heart-disease
https://medium.com/tag/dataset
https://medium.com/?source=post_page-----8a930cefff1d--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----8a930cefff1d--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----8a930cefff1d--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----8a930cefff1d--------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----8a930cefff1d--------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----8a930cefff1d--------------------------------

